Theoretical Study of the Thermochemistry of Molecules in the $\mathbf{S i}-\mathbf{B}-\mathbf{H}-\mathbf{C l}$ System

Pauline Ho*
Sandia National Laboratories, MS 0601, P.O. Box 5800, Albuquerque, New Mexico 87185-0601

Michael E. Colvin ${ }^{\dagger}$ and Carl F. Melius*
Sandia National Laboratories, MS 9214, P.O. Box 969, Livermore, California 94551-0969
Received: June 13, 1997; In Final Form: September 12, 1997^{\otimes}

A self-consistent set of thermochemical parameters for about 100 molecules in the $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ system is obtained using a combination of ab initio electronic structure calculations and empirical corrections (the BACMP4 method). The species include stable and radical species as well as a few transition states. Trends in calculated heats of formation, bond dissociation enthalpies, and heats of reaction for various molecular decomposition channels are discussed. Silylboranes are most likely to decompose via the elimination of H_{2}, HCl , or silylenes. The presence of the B atom reduces the energy required for the 1,1 elimination of H_{2} from the Si atom, relative to the analogous reaction in disilane.

I. Introduction

Chemical vapor deposition (CVD) is a widely used method for depositing thin films that has important applications in the fabrication of microelectronic devices and protective coatings. ${ }^{1}$ In recent years, it has become clear that an improved understanding of the chemistry and physics underlying such a materials-processing method can accelerate the design and optimization of equipment and processes, especially through the use of detailed computational models. ${ }^{2}$ Models have been constructed for these chemically reacting flow systems that can include a detailed description of the chemistry, ${ }^{3}$ but making the best use of such models requires kinetic parameters for many reactions and thermochemical data for all species considered. Unfortunately, for many cases of interest, such data are not currently available.

One case where an improved chemical understanding, expressed via numerical models, could greatly assist equipment and process design is the CVD of doped materials. The ability to dope materials while depositing them (in situ doping), rather than using separate ion-implantation or dopant in-diffusion steps after deposition, would eliminate a number of processing steps. The addition of small amounts of dopant-source gases to CVD processes, however, is often accompanied by sufficiently large changes in deposition rate and detrimental effects on deposition uniformity that such processes are generally not used. For p-type dopants, the use of diborane generally leads to increases in the deposition rate. For deposition of silicon from silane, the addition of a small amount of diborane $\left(1.5 \times 10^{-3}\right.$ of the silane concentration) is reported to double the deposition rate. ${ }^{4}$ For disilane, the addition of diborane (2×10^{-4} of the disilane concentration) is reported to increase the deposition rate by more than a factor of 3 at lower temperatures, ${ }^{5,6}$ although the effect decreases with increasing temperature. ${ }^{5,7}$ For dichlorosilane, the addition of diborane (1×10^{-3} of the dichlorosilane concentration) is reported to increase the deposition rate by 2 orders of magnitude. ${ }^{8}$ In contrast, for n-type dopants, the use

[^0]of phosphine and arsine are reported to decrease deposition rates with silane, ${ }^{4}$ while increasing deposition rates with dichlorosilane. ${ }^{8}$

It is generally believed that these dopant-source gases are altering the rates of reactions occurring at the silicon surface. Even after a great deal of work, ${ }^{9,10}$ however, the details of hydrogen bonding and reactions on silicon surfaces in the absence of dopants are not fully understood, much less in the presence of dopants. In such situations, we have found that an understanding of analogous gas-phase reactions can be useful guides for evaluating proposed surface reactions, especially when they involve covalent rather than metallic bonding. In addition, it is possible, though unlikely under the process conditions used in many production CVD systems, that gasphase reactions occur forming silylboranes, which then alter deposition rates in the CVD of boron-doped silicon.

In this paper, we present calculations on molecules in the $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ system, which provide useful insights into bonding geometries and energies, and heats of reaction. Studies of the smaller molecular systems allow us to explore a wide variety of bonding configurations while obtaining sufficiently accurate information on geometries and energetics. We use a combination of ab initio electronic structure calculations and empirical bond additivity corrections (BACs) to obtain thermochemical data for about 100 molecules, specifically the $\mathrm{SiBH}_{n}(n \leq 5)$, $\mathrm{Si}_{2} \mathrm{BH}_{n}(n \leq 7), \mathrm{SiB}_{2} \mathrm{H}_{n}(n \leq 6)$, and $\mathrm{SiBH}_{n} \mathrm{Cl}(n \leq 4)$ species. We include both stable and radical species, as well as a few transition states for key decomposition reactions. We have previously applied these methods to a number of chemical systems important for modeling CVD and combustion, including numerous compounds composed of first-row elements, ${ }^{11}$ the $\mathrm{Si}-$ $\mathrm{H},{ }^{12,13} \mathrm{Si}-\mathrm{H}-\mathrm{Cl},{ }^{12} \mathrm{Si}-\mathrm{N}-\mathrm{H}-\mathrm{F},{ }^{14,15} \mathrm{Si}-\mathrm{C}-\mathrm{Cl}-\mathrm{H},{ }^{16,17} \mathrm{Si}-\mathrm{O}-$ $\mathrm{H}-\mathrm{C},{ }^{18,19}$ and $\mathrm{B}-\mathrm{N}-\mathrm{Cl}-\mathrm{H}^{20}$ systems. The thermochemical data for the $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ species presented here form a selfconsistent set with the data from these previous works.

A number of the $\mathrm{Si}-\mathrm{B}-\mathrm{H}$ species have been the subject of previous quantum chemistry studies. Mains, Trachtman, and Bock published a series of papers on silylboranes, ${ }^{21,22}$ fluorine substituted silylboranes, ${ }^{23-25}$ unsaturated silicon boron hydrides, ${ }^{26}$ and a few transition states for H_{2} elimination. ${ }^{27}$ Luke et al. ${ }^{28,29}$ included the $\mathrm{SiBH}_{x}(x=1,3,5)$ species in their studies of substituted silicon and carbon compounds. Schleyer and

Kost 30 included a few $\mathrm{Si}-\mathrm{B}-\mathrm{H}$ species in their study of π-bond energies of C and Si compounds, as did Coolidge and Borden ${ }^{31}$ in their study of substituent effects on silyl and methyl radical stabilization. Subramanian and co-workers studied the isomers of $\mathrm{SiB}_{2} \mathrm{H}_{4}{ }^{32}$ and $\mathrm{Si}_{2} \mathrm{BH}_{3} .{ }^{33}$

Some of the $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ species, particularly the less saturated ones, are of interest because of their unusual structures and chemical bonding. A number of these species have H atoms bridge-bonded between the Si and the B and/or cyclic structures. In this paper, the nomenclature $\mathrm{Si}(\mathrm{H}) \mathrm{B}$ denotes a H bridge bonded between a Si and a B , whereas $-\mathrm{HSiBHSiH}-$ denotes a cyclic species with one H atom bonded to each of the silicons and the boron. Such structures will be discussed in more detail in section III.A. In the tables, transition states are indicated by writing out a reaction; i.e., $\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{3}$ represents the transition state for silylene elimination from silylborane.

II. Theoretical Methods

The theoretical methods used in this work have been described elsewhere, ${ }^{11,14}$ so we present only a short description here. Our choice of theoretical method represents a compromise between using sufficiently high levels of theory to get accurate results and the ability to handle molecules with a reasonably large number of heavy atoms.

Electronic structure calculations are done using Gaussian 94^{34} and earlier versions of these quantum chemistry codes. Equilibrium geometries and harmonic vibrational frequencies are obtained at the HF/6-31G* level of theory (restricted HartreeFock theory, RHF, ${ }^{35}$ for the closed-shell molecules and unrestricted Hartree-Fock theory, UHF, ${ }^{36}$ for the open-shell molecules, using the $6-31 \mathrm{G}^{*}$ basis set ${ }^{37,38}$). This level of theory provides sufficiently accurate equilibrium geometries but does not provide total energies suitable for determining reaction energies involving the breaking of covalent bonds. Vibrational frequencies calculated at this level of theory are known to be systematically larger than experimental values ${ }^{39}$ so each calculated frequency has been scaled by dividing it by 1.12 .

To determine atomization enthalpies, and thus heats of formation, the effects of electron correlation are included by performing single-point calculations, using Moller-Plesset perturbation theory, at the HF/6-31G* geometries. In most cases, MP4(SDTQ)/6-31G** calculations (fourth-order perturbation theory with single, double, triple, and quadruple substitutions using the $6-31 \mathrm{G}^{* *}$ basis set) are done. This level of theory has been used in most of the previous work; the errors remaining in the total energies are sufficiently systematic that the bond additivity corrections provide enthalpies good to a few kcal mol^{-1}. However, we believe that transition-state energies calculated with this method tend to be systematically high by several kcal mol ${ }^{-1}$.

Empirical BACs are used to account for systematic errors in the ab initio calculations, which result primarily from basis set truncation. The BACs depend mainly on the bond type and bond length, but there are also corrections based on the types of the neighboring atoms. For the example of the chemical bond between atoms X_{i} and X_{j} in the molecule $X_{k}-X_{i}-X_{j}$, the BAC has the form $\operatorname{BAC}\left(\mathrm{X}_{i}-\mathrm{X}_{j}\right)=f_{i j} g_{k i j}$, where $f_{i j}=A_{i j} \exp -$ $\left(-\alpha_{i j} R_{i j}\right), g_{k i j}=\left(1-h_{i k} h_{i j}\right)$, and $h_{i k}=B_{k} \exp \left[-\alpha_{i k}\left(R_{i k}-1.4\right.\right.$ \AA)]. $A_{i j}$ and $\alpha_{i j}$ are empirical parameters that depend on the bond type $\mathrm{X}_{i}-\mathrm{X}_{j}$, and $R_{i j}$ is the bond distance (in angstroms) from the HF geometry. The parameter B_{k}, used in the neighboring-atom correction factor $g_{k i j}$, depends on the type of atom k. In the case of a chemical bond between atoms X_{i} and X_{j} in the molecule $\mathrm{X}_{k}-\mathrm{X}_{i}-\mathrm{X}_{j}-\mathrm{X}_{l}$, the added heavy atom leads to a similar neighboring-atom correction factor, and the BAC has the form $\operatorname{BAC}\left(\mathrm{X}_{i}-\mathrm{X}_{j}\right)=f_{i j} g_{k j} g_{l j i}$.

TABLE 1: Parameters ${ }^{a}$ Used in Bond Additivity Corrections

bond	A	α
$\mathrm{H}-\mathrm{H}$	18.98	2.0
B-H	31.12	2.0
$\mathrm{B}-\mathrm{Cl}$	172.49	2.0
B-B	969.8	3.8
$\mathrm{Si}-\mathrm{H}$	92.79	2.0
Si-B	45.77	1.0
$\mathrm{Si}-\mathrm{Cl}$	721.93	2.0
$\mathrm{Si}-\mathrm{Si}$	3330.21	2.7
$\mathrm{H}-\mathrm{Cl}$	116.40	2.0
atom	B	energy (hartrees)
H	0.0	-0.498 2320
B	0.2	-24.576 2258
Si	0.2	-288.8879430
Cl	0.42	-459.570 2737

${ }^{a}$ See text for parameter definitions.
Table 1 lists the values for $A_{i j}, \alpha_{i j}$, and B_{k} used in this (and previous) work. For $\mathrm{Si}-\mathrm{H}, \mathrm{Si}-\mathrm{Si}$, and $\mathrm{Si}-\mathrm{Cl}$ bonds, silane, disilane, and tetrachlorosilane are used as reference compounds to determine $A_{i j}$ values, while α values are determined by analogy with related classes of compounds. For $\mathrm{B}-\mathrm{Cl}$ bonds, BCl_{3} was the reference compound. As discussed elsewhere, ${ }^{20}$ the BACs for $\mathrm{B}-\mathrm{H}$ were determined using a G 2 calculation ${ }^{40}$ as a reference because of large uncertainties in the recommended heats of formation in the literature for BH_{n} compounds. Corrections for $\mathrm{B}-\mathrm{B}$ bonds were needed for a few of the $\mathrm{Si}_{1} \mathrm{~B}_{2} \mathrm{H}_{n}$ compounds. A_{BB} was determined by using G 2 calculations for $\mathrm{B}_{2} \mathrm{H}_{4}$ (see the Supporting Information for results from the G2 calculations), while $\alpha_{\text {BB }}$ was set to the value determined for $\mathrm{C}-\mathrm{C}$ bonds. ${ }^{11}$ There is little thermochemical data in the literature for species in the $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ system, so we determined the BAC parameters for $\mathrm{Si}-\mathrm{B}$ using G 2 calculations of the atomization energies for $\mathrm{H}_{3} \mathrm{SiBH}_{2}$ and $\mathrm{H}_{2} \mathrm{Si}=\mathrm{BH}$. Values for $B_{\mathrm{H}}, B_{\mathrm{Cl}}$, and B_{Si} were determined previously. ${ }^{11,14}$ The B_{B} value was chosen to be consistent with the other first-row elements.

There is an additional BAC for spin. For open-shell molecules, the unrestricted Hartree-Fock (UHF) method leads to spin contamination errors that are approximated using the Moller-Plesset projection approximations of Schlegel. ${ }^{41}$ The $\mathrm{BAC}\left(\right.$ spin $\left.S^{2}\right)$ is defined as the difference between the energy calculated with the MP3 level of theory using the UHF wave function ($E(\mathrm{UMP} 3)$) and the projected UMP3 energy (E (PUMP3)). ${ }^{40}$ For closed-shell molecules that are UHF unstable (e.g., SiH_{2}), we use a correction, BAC(spin UHF-I), defined as $K_{\mathrm{UHF}-\mathrm{I}} S(S+1)$, where S is the spin obtained from the UHF/6-31G** calculation and $K_{\mathrm{UHF}-\mathrm{I}}$ has the value of 10.0 $\mathrm{kcal} \mathrm{mol}^{-1}$, based on O_{3}.

Table 2 lists calculated bond lengths for each species in this study, as well as the BACs corresponding to each bond and any spin corrections. The BACs listed are those for the highest level of theory, MP4(SDTQ). The sum of these bond additivity corrections are combined with the electronic energy and the unscaled zero-point energy to obtain the heat of formation $\left(\Delta H^{\circ}\right)$ at 0 K . From the heats of formation at 0 K , statisticalmechanics equations involving the calculated geometries and scaled frequencies give entropies, heat capacities, enthalpies, and free energies at other temperatures. For historical reasons, the unscaled frequencies are used for determining $\Delta H^{\circ}{ }_{\mathrm{f}}(0)$ while the scaled frequencies are used to calculated thermochemistry at higher temperatures. Minor differences that would result from using the scaled frequencies to calculate $\Delta H_{\mathrm{f}}^{\circ}(0)$ are incorporated into the BACs.

TABLE 2: Calculated Bond Lengths (\AA) with Degeneracies ${ }^{a}$ and Corresponding Bond Additivity Corrections (kcal mol ${ }^{-1}$) for the MP4(SDTQ) Level of Theory

species	$\mathrm{Si}-\mathrm{B}$ bond length	BAC	$\begin{gathered} \mathrm{Si}-\mathrm{H} \text { bond } \\ \text { length } \end{gathered}$	BAC	$\begin{gathered} \mathrm{B}-\mathrm{H} \text { bond } \\ \text { length } \end{gathered}$	BAC	other ${ }^{\text {b }}$	bond length	BAC
$\mathrm{H}_{3} \mathrm{SiBH}_{2}$	2.040	5.95	1.483	4.78	$1.190(2)^{a}$	2.88			
			1.479(2)	4.81					
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	2.188	5.13	1.656(2)	3.28	1.186	2.90			
			1.499	4.63	1.188	2.89			
					1.314(2)	2.18			
$\mathrm{H}_{2} \mathrm{SiBH}_{2}$	1.954	6.48	1.471(2)	4.89	1.188(2)	2.89	spin		0.43
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	2.198	5.08	1.667(2)	3.22	1.189(2)	2.89	spin		0.74
					1.310(2)	2.20			
$\mathrm{HSi}(\mathrm{H}) \mathrm{BH}_{2}$	1.971	6.37	1.490	4.71	1.184	2.92	spin		1.15
			1.707	2.98	1.189	2.89			
					1.341	2.08			
$\mathrm{H}_{3} \mathrm{SiBH}$	2.015	6.10	1.479(2)	4.82	1.184	2.91	spin		0.29
			1.481	4.80					
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	2.164	5.26	1.501	4.62	$1.294(2)$	2.27	spin		0.33
			1.677(2)	3.15	1.183	2.92			
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	1.811	7.48	1.732(2)	2.83	1.177	2.962.19			
					$1.314(2)$				
$\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$	1.912	6.77	1.610	3.63	1.530	1.432.85	UHF		1.31
					$1.195(2)$				
$\mathrm{HSiBH}_{2}{ }^{1} \mathrm{~A}^{\prime}$	2.013	6.11	1.514	4.49	1.194(2)	2.86	UHF		3.14
$\mathrm{H}_{2} \mathrm{SiBH}^{1} \mathrm{~A}_{1}$	1.819	7.42	1.466(2)	4.94	1.171	2.99	UHF		2.61
$\mathrm{HSiBH}_{2}{ }^{3} \mathrm{~A}^{\prime \prime}$	1.976	6.34	1.479	4.82	1.189	2.89	spin		0.21
					1.187	2.90			
$\mathrm{H}_{2} \mathrm{SiBH}^{3} \mathrm{~A}^{\prime \prime}$	1.913	6.76	1.470	4.90	1.182	2.93	spin		0.41
			1.474	4.86					
$\mathrm{H}_{3} \mathrm{SiB}$	2.136	5.40	1.481(3)	4.80			UHF		6.44
$\mathrm{Si}\left(\mathrm{H}_{3}\right) \mathrm{B}$	2.007	6.15	1.608(3)	3.63	1.400(3)	1.84			
SiBH_{2}	1.980	6.32			1.194(2)	2.86	spin		0.31
HSiBH	1.907	6.80	1.514	4.49	1.178	2.95	spin		0.54
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{B}$	1.831	7.34	1.825(2)	2.36	1.276(2)	2.37	spinspin		3.320.74
$\mathrm{H}_{2} \mathrm{SiB}$	1.934	6.62	1.480(2)	4.81				spin	
SiBH ${ }^{3} \Sigma^{-}$	1.859	7.13 (1.178	2.95	spin		0.74 0.50
SiBH ${ }^{1} \Delta$	1.881	6.976.61			1.177	2.96	UHF		10.06
$\mathrm{HSiB}{ }^{3} \mathrm{~A}^{\prime \prime}$	1.935		1.516	4.47					0.28
SiB	1.847	7.22	1.515				spin		13.40
$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{3}$	2.140	5.39		4.37	$\begin{aligned} & 1.184(2) \\ & 1.493 \\ & 1.189(2) \end{aligned}$	2.911.53	UHF		4.29
			1.468 (2)	4.92				1.020	
$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{H}_{2}$	1.979	6.32	$\begin{aligned} & 1.627 \\ & 1.556 \end{aligned}$	$\begin{aligned} & 3.58 \\ & 4.13 \end{aligned}$		2.89	H-H		2.47
			$\begin{aligned} & 1.556 \\ & 1.478 \end{aligned}$	$\begin{aligned} & 4.13 \\ & 4.82 \\ & 3.86 \end{aligned}$					
$\mathrm{HSiBH}_{2} \rightarrow \mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$	1.928	6.65	1.582		$\begin{aligned} & 1.696 \\ & 1.194(2) \end{aligned}$	$\begin{aligned} & 1.03 \\ & 2.86 \end{aligned}$	UHF		1.24
$\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2} \rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	1.861	7.12	$\begin{aligned} & 1.644 \\ & 2.241 \end{aligned}$	$\begin{aligned} & 3.38 \\ & 1.04 \end{aligned}$		$\begin{aligned} & 1.80 \\ & 2.93 \end{aligned}$			
					$\begin{aligned} & 1.182 \\ & 1.227 \end{aligned}$				
						$\begin{aligned} & 1.93 \\ & 2.65 \end{aligned}$			
$\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{BH}_{2}$	2.035	5.97	$\begin{aligned} & 1.482(2) \\ & 1.478 \\ & 1.479(2) \end{aligned}$	4.794.83	1.190(2)	2.88	$\mathrm{Si}-\mathrm{Si}$	2.364	5.63
				4.82					
$\mathrm{HB}\left(\mathrm{SiH}_{3}\right)_{2}$	2.040(2)	5.88	$\begin{aligned} & 1.479(4) \\ & 1.483(2) \end{aligned}$	$\begin{aligned} & 4.82 \\ & 4.78 \end{aligned}$	1.192	2.87			
$\mathrm{H}_{2} \mathrm{SiBHSiH}_{3}$	$\begin{aligned} & 2.034 \\ & 1.945 \end{aligned}$	5.91	$1.481(2)$1.480	4.80	1.191	2.88	spin		0.41
		6.47		4.81					
			1.471(2)	4.89					
$\mathrm{H}_{3} \mathrm{SiBSiH}_{3}$	2.008(2)	6.07	1.478(2)	4.83			spin		0.42
			1.480(2)	4.81					
			$1.481(2)$	4.80					
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}_{3}$	1.818	7.33	1.751(2)	2.73	1.302(2)	2.25			
	2.011	6.04	1.479(3)	4.82					
$-\mathrm{H}_{2} \mathrm{SiBHSiH}_{2}-$ (cyc)	1.894(2)	6.78	1.470(2)	4.90	1.184	2.91	$\mathrm{Si}-\mathrm{Si}$	2.639	2.68
			1.474(2)	4.87					
$\mathrm{Si}(\mathrm{H}) \mathrm{BHSiH}_{3}$	$\begin{aligned} & 1.880 \\ & 2.049 \end{aligned}$	6.90	1.651	3.33	1.414	1.80	UHF		0.47
		5.82	1.479(2)	4.81	1.191	2.88			
			1.485	4.76					
$\mathrm{H}_{3} \mathrm{SiSiBH}_{2}$	1.986	6.27	1.478	4.83	1.194(2)	2.86	UHF	2.404	3.02
			1.480	4.81			$\mathrm{Si}-\mathrm{Si}$		5.04
			1.481	4.80					
$\mathrm{HSiBHSiH}_{3}$	1.999	6.13	1.514	4.49	1.195	2.85	UHF		2.67
	2.046	5.85	1.480(3)	4.81					
$\mathrm{H}_{3} \mathrm{SiSiHBH}$	1.824	7.37	1.472	4.89	1.172	2.98	UHF		2.86
			1.477	4.84			$\mathrm{Si}-\mathrm{Si}$	2.331	6.14
			1.476(2)	4.85					
$\mathrm{H}_{2} \mathrm{SiBSiH}_{3}$	1.828	7.26	$1.468(2)$	4.92			UHF		3.09
	2.002	6.09	$1.477(2)$	4.84					
			1.479	4.81					

TABLE 2 (Continued)

species	$\mathrm{Si}-\mathrm{B}$ bond length	BAC	$\mathrm{Si}-\mathrm{H}$ bond length	BAC	B-H bond length	BAC	other ${ }^{\text {b }}$	bond length	BAC
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}_{2}$	1.826	7.27	$1.744(2)$	2.76	1.301(2)	2.25	spin		0.89
	1.996	6.13	1.478(2)	4.83					
$-\mathrm{H}_{2} \mathrm{SiBHSiH}-(c y c)$	2.060	5.76	1.475	4.86	1.181	2.93	$\mathrm{Si}-\mathrm{Si}$	2.278	7.08
	1.974	6.27	1.478	4.83					
			1.476	4.84					
$-\mathrm{H}_{2} \mathrm{SiBSiH}_{2}-$ (cyc)	1.881(2)	6.86	$1.474(2)$	4.87			$\mathrm{Si}-\mathrm{Si}$	2.622	2.80
			1.476 (2)	4.85					
$\mathrm{HSiBHSiH}_{2}$	2.015	6.03	1.505	4.58	1.193	2.86	spin		3.88
	1.975	6.27	1.474	4.87					
			1.475	4.86					
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BHSiH}$	2.063	5.76	1.505	4.57	1.194	2.86	spin		4.62
	2.189	5.08	1.667	3.21	$1.306(2)$	2.22			
			1.669	3.20					
$\mathrm{HSi}(\mathrm{H}) \mathrm{BHSiH}$	1.983	6.22	1.492	4.69	1.341	2.07	spin		5.22
	2.028	5.95	1.502	4.60	1.193	2.86			
			1.697	3.04					
$-\mathrm{Si}(\mathrm{H}) \mathrm{SiBH}_{2}-$ (cyc)	1.993(2)	6.15	1.624(2)	3.55	1.190(2)	2.88	$\mathrm{Si}-\mathrm{Si}$	2.341	5.97
$-\mathrm{HSiBHSiH}-$ (cyc)	1.931	6.52	1.474(2)	4.87	1.181	2.93	$\mathrm{Si}-\mathrm{Si}$	2.106	11.22
	1.930	6.53							
$-\mathrm{Si}(\mathrm{H}) \mathrm{BH}(\mathrm{H}) \mathrm{Si}-$ (cyc)	2.067(2)	5.72	1.706(2)	2.98	1.284(2)	2.32	$\mathrm{Si}-\mathrm{Si}$	2.292	6.82
					1.184	2.92			
$-\mathrm{HSiSi}(\mathrm{H}) \mathrm{BH}-$ (cyc)	2.410	4.07	1.463	4.98	1.183	2.92	$\mathrm{Si}-\mathrm{Si}$	2.174	9.36
	1.894	6.80	1.830	2.33	1.249	2.50			
$-\mathrm{SiBHSiH}_{2}-$ (cyc)	1.909	6.68	1.472	4.89	1.184	2.92	$\begin{array}{r} \mathrm{UHF} \\ \mathrm{Si}-\mathrm{Si} \end{array}$		4.21
	1.867	6.96	1.476	4.85				2.699	2.28
$\mathrm{H}_{2} \mathrm{BSi}(\mathrm{H}) \mathrm{Si}$	1.992	6.23	1.853	2.26	1.188	2.89	$\begin{array}{r} \mathrm{UHF} \\ \mathrm{Si}-\mathrm{Si} \end{array}$		1.71
			1.604	3.71	1.190	2.88		2.196	8.84
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}$	1.825	7.28	1.744	2.76	1.298	2.27	UHF		3.55
	2.019	5.99	1.722	2.89	1.309	2.21			
			1.511	4.52					
Si(H)BHSiH	2.034	5.91	1.512	4.51	1.204	2.80	UHF		5.11
	1.893	6.80	1.612	3.61	1.501	1.51			
$\mathrm{HSiBSiH}_{2}$	1.845	7.13	$1.468(2)$	4.93			UHF		4.87
	1.934	6.52	1.513	4.50					
HSiBHSiH	2.007(2)	6.08	1.513(2)	4.50	1.203	2.81	UHF		6.09
$\mathrm{H}_{2} \mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2}$	2.044(2)	5.86	1.483(2)	4.78	1.190(4)	2.88			
$\mathrm{HSi}\left(\mathrm{BH}_{2}\right)_{2}$	1.993(2)	6.16	1.477	4.84	1.189(4)	2.89	spin		0.41
$\mathrm{HBSiH}_{2} \mathrm{BH}_{2}$	2.044	5.86	1.486	4.75	1.189	2.88	spin		0.34
	2.018	6.02	1.481	4.79	1.191	2.88			
					1.185	2.91			
$-\mathrm{BH}(\mathrm{H}) \mathrm{Si}(\mathrm{H}) \mathrm{BH}-(\mathrm{cyc})$	1.946(2)	6.39	1.836(2)	2.30	1.178(2)	2.95	B-B	1.663	1.72
					1.212(2)	2.69			
$-\mathrm{HBBH}(\mathrm{H}) \mathrm{SiH}-$ (cyc)	2.003	6.03	1.635	3.42	1.296	2.26	$B-B$	1.634	1.91
	1.821	7.22	1.469	4.91	1.183	2.92			
					1.175	2.97			
$-\mathrm{HB}(\mathrm{H}) \mathrm{BHSiH}-(\mathrm{cyc})$	1.859(2)	6.99	1.464	4.96	1.322(2)	2.09	B-B	1.823	0.94
					1.182(2)	2.932.98			
$-\mathrm{H}_{2} \mathrm{SiBHBH}-$ (cyc)	2.322	4.40	1.473(2)	4.87	1.173		$\begin{aligned} & \text { UHF } \\ & \mathrm{B}-\mathrm{B} \end{aligned}$		1.89
	1.902	6.66			1.179	2.94		1.526	2.87
$\begin{aligned} & \mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2} \\ & \mathrm{H}_{2} \mathrm{BBSiH}_{2} \end{aligned}$	$1.985(2)$	6.21			1.192(4)	2.87	UHF		0.32
	1.834	7.24	1.468(2)	4.93	1.192(2)	2.87			4.29
							B-BUHF	1.630	1.96
$\mathrm{H}_{2} \mathrm{BBHSiH}$	2.013	6.07	1.513	4.50	1.194(2)	2.86			2.90
							B-B	1.671	1.68
$\mathrm{H}_{3} \mathrm{SiBHCl}$	2.042	5.81	1.475	4.85	1.185	2.91	$\mathrm{B}-\mathrm{Cl}$	1.762	4.98
			$1.479(2)$	4.82					
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2}$	2.032	5.93	$1.474(2)$	4.87	1.190	2.88	$\mathrm{Si}-\mathrm{Cl}$	2.081	11.11
					1.187	2.90			
$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	2.188	5.08	$1.669(2)$	3.20	$1.304(2)$	2.23	$\mathrm{Si}-\mathrm{Cl}$	2.100	10.73
					1.185	2.91			
					1.189	2.89			
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$	2.198	4.99	1.494	4.67	1.314(2)	2.18	$\mathrm{B}-\mathrm{Cl}$	1.794	4.68
			$1.661(2)$	3.25	1.183	2.92			
$\mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2}$	2.478	3.79	1.496	4.66	1.181(2)	2.93	$\mathrm{B}-\mathrm{Cl}$	1.975	3.28
			1.671	3.19	1.315	2.18	$\mathrm{Si}-\mathrm{Cl}$	2.293	7.30
$\mathrm{HClSiBH}_{2}$	1.983	6.23	1.470	4.90	1.188	2.89	$\mathrm{Si}-\mathrm{Cl}$	2.072	11.32
					1.186	2.91	spin		0.74
$\mathrm{H}_{2} \mathrm{SiBHCl}$	1.994	6.09	1.474	4.87	1.184	2.92	$\mathrm{B}-\mathrm{Cl}$	1.765	4.94
			1.472	4.88			spin		0.58
$\mathrm{ClSi}(\mathrm{H}) \mathrm{BH}_{2}$	2.039	5.89	1.814	2.41	1.185	2.91	$\mathrm{Si}-\mathrm{Cl}$	2.081	11.13
					1.186	2.90	spin		1.98
					1.281	2.35			
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$	2.212	4.93	1.673(2)	3.17	1.183	2.92	$\mathrm{B}-\mathrm{Cl}$	1.800	4.64
					1.309(2)	2.21			0.77

TABLE 2 (Continued)

species	$\mathrm{Si}-\mathrm{B}$ bond length	BAC	$\mathrm{Si}-\mathrm{H}$ bond length	BAC	$\mathrm{B}-\mathrm{H}$ bond length	BAC	other ${ }^{\text {b }}$	bond length	BAC
$\mathrm{H}_{3} \mathrm{SiBCl}$	2.028	5.89	1.478	4.83			$\mathrm{B}-\mathrm{Cl}$	1.736	5.23
			1.477(2)	4.84			spin		0.31
$\mathrm{HSi}(\mathrm{H}) \mathrm{BHCl}$	2.030	5.88	1.493	4.68	1.184	2.92	$\mathrm{B}-\mathrm{Cl}$	1.781	4.80
			1.752	2.72	1.300	2.25	spin		1.84
$\mathrm{H}_{2} \mathrm{ClSiBH}$	2.000	6.12	1.471(2)	4.89	1.181	2.93	$\mathrm{Si}-\mathrm{Cl}$	2.085	11.03
							spin		0.31
$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	2.163	5.21	1.703(2)	2.99	1.276(2)	2.36	spin		0.38
					1.182	2.93	$\mathrm{Si}-\mathrm{Cl}$	2.100	10.73
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BCl}$	1.813	7.27	1.730(2)	2.85	1.320 (2)	2.17	$\mathrm{B}-\mathrm{Cl}$	1.751	5.05
ClSiBH_{2}	2.044	5.87			1.192(2)	2.87	UHF		2.62
							$\mathrm{Si}-\mathrm{Cl}$	2.120	10.30
HSiBHCl	2.038	5.84	1.511	4.52	1.188	2.89	UHF		3.48
							$\mathrm{B}-\mathrm{Cl}$	1.774	4.86
$\mathrm{H}_{2} \mathrm{SiBCl}$	1.859	6.92	$1.472(2)$	4.89			UHF		4.88
							$\mathrm{B}-\mathrm{Cl}$	1.690	5.70
HClSiBH	1.811	7.37	1.459	5.01	1.170	3.00	UHF		5.50
							$\mathrm{Si}-\mathrm{Cl}$	2.056	11.65
$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{B}$	2.315	4.48	1.673(2)	3.18	$1.355(2)$	2.02	UHF		5.69
							$\mathrm{Si}-\mathrm{Cl}$	2.106	10.61
SiBCl_{2}	2.021	5.81					$\mathrm{B}-\mathrm{Cl}$	1.769(2)	4.71
							spin		0.37
ClSiBCl	1.971	6.14					$\mathrm{Si}-\mathrm{Cl}$	2.120	10.29
							$\mathrm{B}-\mathrm{Cl}$	1.701	5.60
							spin		2.85
SiBHCl	2.009	6.01			1.188	2.89	$\mathrm{B}-\mathrm{Cl}$	1.779	4.81
							spin		0.35
HSiBCl	1.913	6.57	1.513	4.50			$\mathrm{B}-\mathrm{Cl}$	1.695	5.66
							spin		0.55
ClSiBH	1.960	6.38			1.178	2.95	$\mathrm{Si}-\mathrm{Cl}$	2.125	10.18
							spin		2.57
HClSiB	1.976	6.27	1.478	4.83			$\mathrm{Si}-\mathrm{Cl}$	2.085	11.03
									1.36
SiBCl ${ }^{3} \Sigma$	1.869	6.86					$\mathrm{B}-\mathrm{Cl}$	1.701	5.58
							spin		0.59
SiBCl ${ }^{1} \Sigma$	1.886	6.74					$\mathrm{B}-\mathrm{Cl}$	1.697	5.63
							UHF		10.07
ClSiB ${ }^{1} \mathrm{~A}^{\prime}$	1.936	6.52					$\mathrm{Si}-\mathrm{Cl}$	2.091	10.89
							UHF		12.84
ClSiB ${ }^{3} \Sigma^{-}$	1.764	7.71					$\mathrm{Si}-\mathrm{Cl}$	2.020	12.49
							spin		3.10
HClSi:BH3			1.504	4.58	1.189(3)	2.89	UHF		2.14
							$\mathrm{Si}-\mathrm{Cl}$	2.100	10.82
$\mathrm{H}_{2} \mathrm{Si}: \mathrm{BH}_{2} \mathrm{Cl}$			1.509(2)	4.53	1.178	2.95	UHF		1.88
					1.179	2.94	$\mathrm{B}-\mathrm{Cl}$	1.765	5.06
$\mathrm{H}_{3} \mathrm{SiBHCl} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$	2.156	5.20	1.467	4.93	1.181	2.94	UHF		3.46
			1.470	4.90	1.518	1.46	$\mathrm{B}-\mathrm{Cl}$	1.759	5.02
			1.516	4.37					
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$	2.240	4.78	1.458(2)	5.02	1.179(2)	2.94	UHF		5.78
							$\mathrm{B}-\mathrm{Cl}$	1.984	3.22
							$\mathrm{Si}-\mathrm{Cl}$	2.162	9.45
$\mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2} \rightarrow \mathrm{SiHCl}+\mathrm{BH}_{3}$	2.848	2.64	1.499	4.62	1.180(2)	2.94	$\mathrm{B}-\mathrm{Cl}$	2.612	0.93
					1.220	2.71	$\mathrm{Si}-\mathrm{Cl}$	2.155	9.64
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	2.119	5.44	1.475	4.82	1.186(2)	2.91	UHF		2.47
			1.485	4.69	1.802	0.83	$\mathrm{Si}-\mathrm{Cl}$	2.079	11.18
					2.072	0.49			
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$	2.015	6.08	1.695	3.02	1.186	2.91	UHF		3.06
			1.482	4.79	1.190	2.88	$\mathrm{Si}-\mathrm{Cl}$	2.670	3.45
							$\mathrm{H}-\mathrm{Cl}$	1.531	5.25
$\left[\mathrm{HClSi}(\mathrm{H}) \mathrm{BH}_{2}\right] \rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$	2.056	5.83	1.490	4.71	1.186	2.90	$\mathrm{Si}-\mathrm{Cl}$	2.488	4.96
					1.192	2.87	$\mathrm{H}-\mathrm{Cl}$	1.502	5.56
					1.703	0.99			

[^1] correction for UHF instability; "spin" indicates a correction for spin contamination.

There are two primary sources of uncertainty in the calculated heats of formation: uncertainties resulting from the applicability of the theoretical methods to a given molecule and systematic uncertainties resulting from lack of good reference compounds for the BACs.

For the uncertainty in the theoretical methods, we have an ad hoc technique for estimating the error in the BAC-MP4 heats of formation that uses the results from lower-level calculations.

The error estimate is given by error(BAC-MP4) $=[1.0 \mathrm{kcal}$ $\mathrm{mol}^{-1}+\left(\Delta H_{\mathrm{BAC}-\mathrm{MP4}}-\Delta H_{\mathrm{BAC}-\mathrm{MP} 3}\right)^{2}+\left(\Delta H_{\mathrm{BAC}-\mathrm{MP4}}-\right.$ $\Delta H_{\mathrm{BAC}-\mathrm{MP4}(\mathrm{SDQ}))^{2}}+0.25\left(\mathrm{BAC}\left(\mathrm{spin} S^{2}\right)\right.$ or $\mathrm{BAC}($ spin UHF-I) $\left.)^{2}\right]^{1 / 2}$, where we use the notation BAC-MP4 to refer specifically to the BAC-MP4(SDTQ) results, and an inherent uncertainty of $1.0 \mathrm{kcal} \mathrm{mol}^{-1}$ has been included. This formula provides a measure of the consistency of the results across levels of theory, which in turn is related to the confidence we have in

$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{3}$

$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{H}_{\mathbf{2}}$

SibH ${ }^{14}$

$\mathbf{S i}(\mathbf{H}) \mathrm{BH}_{2} \rightarrow \mathbf{S i}\left(\mathrm{H}_{2}\right) \mathbf{B H}$

$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{B}$

Figure 1. $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ structures for SiBH_{n} compounds.
the BAC-MP4 results. However, some species, such as HSiBCl and ClSiBCl , do not have same minima at the Hartree-Fock and higher levels of theory. To maintain uniformity, we always used the HF minimum as the geometry for the single-point, perturbation theory energy calculations in this work. But this does represent an additional source of uncertainty that could add a few $\mathrm{kcal} \mathrm{mol}^{-1}$ to the estimates derived using the above formula.

The second major source of uncertainty, lack of good reference compounds, can add a few more $\mathrm{kcal} \mathrm{mol}^{-1}$ to the uncertainty estimates and will scale with the number of bonds in the molecule. The use of different reference values would tend to shift our calculated heats of formation as a group, so calculated bond dissociation enthalpies and reaction enthalpies would be altered less than the heats of formation. Overall, we believe that the uncertainties in these BAC-MP4 heats of formation lie in the range $3-8 \mathrm{kcal} \mathrm{mol}^{-1}$, with the larger values corresponding to the larger or more unsaturated systems, particularly those that involve unusual bonding.

III. Results and Discussion

In this paper, we cover a variety of $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ species, but this is not a comprehensive study of all possible permutations of these elements. We treat the $\mathrm{SiBH}_{n}(n \leq 5)$ species in the most detail; we include results for a number of higher-energy isomers and electronically excited states, as well as transition states for four decomposition reactions. We treat the $\mathrm{Si}_{2} \mathrm{BH}_{n}$ ($n \leq 7$) and $\mathrm{SiB}_{2} \mathrm{H}_{n}(n \leq 6)$ species in less detail; we include fewer high-energy isomers, fewer highly unsaturated species, and no transition states. For chlorinated compounds, we cover most of the $\mathrm{SiBH}_{n} \mathrm{Cl}(n \leq 4)$ species; we include a variety of higher-energy isomers, several adducts and transition states, plus SiBCl_{2} and ClSiBCl .

The focus of this paper is thermochemistry rather than the electronic structure calculations per se. Therefore, this section primarily presents and discusses the thermochemical results, while the Supporting Information, described in the Appendix,
provides the detailed results of the electronic structure calculations. A number of species, however, exhibit sufficiently unusual structures that we include a section discussing molecular geometries, although the numerical details of these structures are given only in the Supporting Information.
A. Bonding in $\mathbf{S i}-\mathbf{B}-\mathbf{H}-\mathbf{C l}$ Molecules. The HF/6-31G* geometries found for the molecules studied in this paper are shown in Figures 1-3. There are a number of interesting features, particularly among the less saturated species. The most notable of these are the presence of the bridge-bonded H atoms and the prevalence of cyclic isomers in the larger molecules. Rather than discussing every molecule in detail, we use a few examples to illustrate interesting points. A number of features of the bonding in the $\mathrm{SiBH}_{n}(n=1-5)$ species have been discussed by Mains and co-workers, ${ }^{25}$ so we do not repeat such material here.

The H atoms bridge-bonded to both Si and B in these $\mathrm{Si}-$ $\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ compounds are analogous to bridged H bonds observed in other compounds. The bond lengths are somewhat longer than normal: $1.6-1.7 \AA$ rather than $1.5 \AA$ for $\mathrm{Si}-\mathrm{H}$ bonds and $1.3-1.5 \AA$ rather than $1.2 \AA$ for $\mathrm{B}-\mathrm{H}$ bonds. Bridged bonds are well-known in compounds such as the boron hydrides and $\mathrm{Al}_{2} \mathrm{Cl}_{6}{ }^{42}$ In computational studies, bridged H bonds were predicted for unsaturated $\mathrm{Si}_{2} \mathrm{H}_{n}$ species, with $\mathrm{Si}\left(\mathrm{H}_{2}\right)$ Si drawing the most attention. ${ }^{43}$ Such structures were subsequently confirmed by spectroscopic experiments. ${ }^{44}$

In a number of cases, we found that plausible bridged structures, especially singly bridged species, were not stable at our level of theory. For example, $\mathrm{H}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$ was not stable at the HF/6-31G* level of theory we used for the geometry optimizations, but rather opened up to normal $\mathrm{H}_{3} \mathrm{SiBH}_{2}$ geometry. Similarly, $\mathrm{Si}(\mathrm{H}) \mathrm{BHCl}$ opened to $\mathrm{HSiBHCl}, \mathrm{Si}(\mathrm{H}) \mathrm{BH}$ opened to SiBH_{2}, and $\mathrm{ClSi}(\mathrm{H}) \mathrm{BH}$ opened to ClSiBH_{2}. In contrast, attempts to find a stable $\mathrm{HSi}(\mathrm{H}) \mathrm{BH}$ were not successful because the H on the Si preferred to move into a bridged position, resulting in the $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$ species. Although $\mathrm{Si}(\mathrm{H}) \mathrm{Si}$ is the most stable form of $\mathrm{Si}_{2} \mathrm{H},{ }^{45}$ we did not find an analogous

$\mathrm{H}_{3} \mathrm{SiBSiH}_{3}$

Si(H)BHSiH

Figure 2. $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ structures for $\mathrm{Si}_{2} \mathrm{BH}_{n}$ compounds.
stable $\mathrm{Si}(\mathrm{H}) \mathrm{B}$ species; attempts to find such a structure resulted in SiBH. We note that Mains et al. ${ }^{25}$ also did not find a bridged $\mathrm{Si}(\mathrm{H}) \mathrm{B}$ species.

Bridge-bonded $\mathrm{Si}(\mathrm{H}) \mathrm{B}$ groups are not the same in all molecules. For example, $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$ and $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$ have calculated $\mathrm{Si}-\mathrm{B}$ bond lengths of 2.198 and $2.212 \AA$, respectively, which are longer than the "normal" $\mathrm{Si}-\mathrm{B}$ single bond length of $2.040 \AA$ calculated for $\mathrm{H}_{3} \mathrm{SiBH}_{2}$. In contrast, $\mathrm{Si}\left(\mathrm{H}_{2}\right)-$ BH and $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BCl}$ have calculated bond lengths of 1.811 and $1.813 \AA$, which are among the shortest $\mathrm{Si}-\mathrm{B}$ bonds obtained in this study. Note that $\mathrm{H}_{2} \mathrm{SiBH}$, which is planar and can be thought of as containing a "normal" $\mathrm{Si}-\mathrm{B}$ double bond, has a calculated $\mathrm{Si}-\mathrm{B}$ bond length of $1.819 \AA$. In the $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$ case, we have simultaneously formed a "divalent" silicon interacting with a "tetravalent" boron due to the bridging hydrogens. The bonds on the B are close to tetrahedral, and the bridge bonds lie opposite from each other in a plane with the Si and the B . The $\mathrm{Si}-\mathrm{H}$ bonds make a 72° angle at the Si , which is even smaller than expected for $s^{2} p^{2}$ electronic configuration, although the bridging $\mathrm{B}-\mathrm{H}$ bonds make a 98° angle at the B. In the $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$ case, we have a short bond distance $(1.811 \AA)$ between the Si and the B in addition to the bridged H bonds. The bridging H atoms are both on one side of the $\mathrm{Si}-\mathrm{B}$ bond with the H on the B in line with the Si and B .

The presence of Cl on the Si or B does not prevent the formation of bridged H bonds, although, as will be discussed in section III.B, it does affect relative energies of bridged and nonbridged isomers. Bridge-bonded Cl atoms, however, are uncommon. $\mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2}$ is the only stable species we found
that had a bridged Cl atom. The $\mathrm{Si}-\mathrm{Cl}$ bond distance of 2.29 \AA is somewhat longer than normal ($2.08 \AA$ in $\mathrm{H}_{2} \mathrm{ClSiBH}_{2}$), as is the $\mathrm{B}-\mathrm{Cl}$ bond distance of $1.98 \AA\left(1.76 \AA\right.$ in $\left.\mathrm{H}_{3} \mathrm{SiBHCl}\right)$. The transition state for the $\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$ reaction also has a bridged Cl atom transferring from the Si to the B . All other attempts to find bridged Cl atoms (which concentrated on the less-saturated species) resulted in the Cl being bonded to either the Si or B . We note that Bock et al. ${ }^{24}$ reported a stable species, $\mathrm{FSi}\left(\mathrm{F}_{2}\right) \mathrm{BH}_{2}$, with bridged F atoms.

Another noteworthy feature in the $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ compounds is the prevalence of $\mathrm{Si}-\mathrm{H}$ bonds that are nearly perpendicular to the $\mathrm{Si}-\mathrm{B}$ bond rather than having a tetrahedral bonding, particularly in the unsaturated molecules. For example, the $\mathrm{H}-\mathrm{Si}-\mathrm{B}$ bond angle is 91.6° in $\mathrm{HSiBH}_{2}, 88.6^{\circ}$ in HSiBH , and 85.8° in HSiB . These nearly perpendicular angles result from the preference of Si atoms in silylenes to have $\mathrm{s}^{2} \mathrm{p}^{2}$ electronic configuration rather than sp^{3} hybridization, as evidenced by the 93.3° bond angle we obtain for SiH_{2}.

We examine the bonding in $\mathrm{Si}_{1} \mathrm{~B}_{1} \mathrm{H}_{1}$ species in more detail. We find $\mathrm{SiBH}{ }^{3} \Sigma^{-}$and ${ }^{1} \Delta$ both to be linear with $\mathrm{Si}-\mathrm{B}$ bond lengths of 1.86 and $1.88 \AA$, respectively, indicating the presence of $\mathrm{Si}-\mathrm{B}$ double bonds and sp hybridization for the $\mathrm{B}-\mathrm{H}$ bond. For HSiB , we find that the ${ }^{3} \mathrm{~A}^{\prime \prime}$ state has a bond angle close to 90° and a $\mathrm{Si}-\mathrm{B}$ bond length of $1.935 \AA$, indicating a nearly single $\mathrm{Si}-\mathrm{B}$ bond involving an $\mathrm{s}^{2} \mathrm{p}^{2} \mathrm{Si}$. In contrast, HSiB ${ }^{1} \Sigma$ (which is not included in our tables because it has a very high energy and was very UHF unstable) is linear with a $\mathrm{Si}-\mathrm{B}$ bond length of $1.64 \AA$, indicating a $\mathrm{Si}-\mathrm{B}$ triple bond. Our attempts to find a bent HSiB singlet were not successful, as the H

$\mathrm{H}_{2} \mathrm{ClSIBH}_{2} \rightarrow \mathrm{SIH}_{2}+\mathrm{BH}_{2} \mathrm{C}$

Figure 3. $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ structures for $\mathrm{SiB}_{2} \mathrm{H}_{n}$ (top) and $\mathrm{SiBH}_{n} \mathrm{Cl}_{m}$ (bottom) compounds.
migrated via a bridged structure to the B atom. We note that we did find a stable bent ClSiB singlet, as the Cl does not form a bridged structure and thus did not migrate to the B . Luke et al. ${ }^{28}$ reported similar results for the SiBH species and the bent HSiB triplet, although their energy splittings are greater than ours. They also reported that all linear HSiB species had imaginary frequencies at their level of theory and that a bent $\mathrm{HSiB}{ }^{1} \mathrm{~A}^{\prime}$ that was stable with the $3-21 \mathrm{G}$ basis set collapsed to $\operatorname{SiBH}{ }^{1} \Delta$ with the $3-21 G^{*}$ basis set. Mains et al. ${ }^{25}$ reported a bent ${ }^{3} \mathrm{~A}^{\prime}$ excited state for SiBH as well as the ${ }^{3} \Sigma^{-}$and ${ }^{1} \Delta$ states. For HSiB, however, they reported a high-energy linear HSiB ${ }^{1} \Sigma^{+}$, but no bent triplet.

The presence of Cl on B does not affect the tendency toward perpendicular $\mathrm{H}-\mathrm{Si}-\mathrm{B}$ bonds. This angle is 91.7° in HSiBHCl , 88.1° in HSiBCl , and 90.9° in $\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$. However, $\mathrm{Si}-$ Cl bonds do not exhibit this as cleanly, with $\mathrm{Cl}-\mathrm{Si}-\mathrm{B}$ bond angles ranging from 92.0° in $\mathrm{ClSiBH}_{2}, 95.2^{\circ}$ in ClSiBH , to 106.6° in ClSiB , i.e., intermediate between the perpendicular $\mathrm{s}^{2} \mathrm{p}^{2}$ and tetrahedral sp^{3}. For comparison, the calculated $\mathrm{Cl}-$ $\mathrm{Si}-\mathrm{Cl}$ bond angle in SiCl_{2} is 101.4°.

For the larger $\mathrm{Si}_{2} \mathrm{BH}_{n}$ and $\mathrm{SiB}_{2} \mathrm{H}_{n}$ molecules, we found a number of cyclic species, especially among the unsaturated molecules. In some cases, such as $-\mathrm{H}_{2} \mathrm{SiBHSiH}-$ (cyc) or $-\mathrm{HSiBHSiH}-$ (cyc), all the bond lengths fall in the "normal" range. In other cases, namely $-\mathrm{H}_{2} \mathrm{SiBHSiH}_{2}-$ (cyc), $-\mathrm{H}_{2} \mathrm{SiBSiH}_{2}-$ (cyc), and $-\mathrm{SiBHSiH} 2^{-}$(cyc), the $\mathrm{Si}-\mathrm{Si}$ bond is much longer than normal, $\geq 2.6 \AA$. This indicates the interaction between the two silicon atoms is much weaker than a single bond (for comparison, the $\mathrm{Si}-\mathrm{Si}$ bond length in $\mathrm{Si}_{2} \mathrm{H}_{6}$ is $2.35 \AA$) and that the structure may be more correctly thought of as "pseudocyclic" rather than "cyclic".

The most unusual geometries, however, are those that combine cyclic structures with bridged H bonds in compounds such as $-\mathrm{Si}(\mathrm{H}) \mathrm{SiBH}_{2}-$ (cyc), $-\mathrm{Si}(\mathrm{H}) \mathrm{BH}(\mathrm{H}) \mathrm{Si}-$ (cyc), or $-\mathrm{HB}(\mathrm{H}) \mathrm{Si}(\mathrm{H}) \mathrm{BH}-$ (cyc). The planarity of $-\mathrm{Si}(\mathrm{H}) \mathrm{SiBH}_{2}-$ (cyc), $-\mathrm{HSiSi}(\mathrm{H}) \mathrm{BH}-$ (cyc), and $-\mathrm{HB}(\mathrm{H}) \mathrm{Si}(\mathrm{H}) \mathrm{BH}-$ (cyc) is quite interesting. As in aromatic hydrocarbons, there are delocalized bonds encouraging this planarity. The papers by Subramanian and co-workers ${ }^{31,32}$ contain discussions of the bonding in the $\mathrm{Si}_{2} \mathrm{BH}_{3}$ and $\mathrm{SiB}_{2} \mathrm{H}_{4}$ molecules.

Figure 4. Calculated heats of formation for $\mathrm{SiBH}_{n}(n \leq 5)$ compounds as a function of n : squares, no bridged hydrogens (normal isomers); circles, one bridged hydrogen; triangles, two bridged hydrogens. Lines have been drawn between points to guide the eye.
B. Thermochemistry. Table 3 lists calculated $\Delta H^{\circ}{ }_{\mathrm{f}}(0) \mathrm{s}$ at various levels of theory for the $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ species. The substantial differences between the MP4 values and the BACMP4 values illustrate the need for corrections such as the BAC or isodesmic reaction ${ }^{46}$ methods with these levels of theory. Table 4 gives calculated values for $\Delta H^{\circ}{ }_{\mathrm{f}}(298)$ at the BAC-MP4 level of theory with error estimates derived from the lower levels of theory. Table 4 also lists calculated heats of formation for a number of other species that either are used in analyzing bond dissociation enthalpies and molecular decomposition reactions or provide comparisons between our calculated values and experimental data. Table 5 collects the calculated heats of formation at 0 and 298 K with entropies and free energies for a range of temperatures. In these tables, the molecules are grouped as follows: first the SiBH_{n} molecules, then the $\mathrm{Si}_{2} \mathrm{BH}_{n}$ molecules, the $\mathrm{SiB}_{2} \mathrm{H}_{n}$ molecules, and last the $\mathrm{SiBH}_{n} \mathrm{Cl}$ molecules. Within each group, the species are placed in order of decreasing n, with transition states listed last. For a given n, the most stable isomer is given first with other isomers following in order of increasing $\Delta H^{\circ}{ }_{\mathrm{f}}$.

The thermochemical data in the literature for $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ compounds are limited to $\mathrm{Si}-\mathrm{H}-\mathrm{Cl}$ and $\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ species. As shown at the bottom of Table 4, our calculated heats of formation generally agree well with the literature values, although there often are large uncertainties in the latter. These species are only of secondary interest in this paper and have been covered in detail elsewhere. ${ }^{12,20}$ As mentioned above, the literature does have electronic structure calculations for some molecules with a $\mathrm{Si}-\mathrm{B}$ bond, but these studies ${ }^{21-32}$ generally emphasize total electronic energies or relative energies, rather than thermochemical data.

The heats of formation in Table 4 exhibit a few noteworthy trends. For the unsaturated molecules, it is generally more favorable to have H (or Cl) bonded to B rather than to Si . For example, $\mathrm{H}_{3} \mathrm{SiBH}$ is $23 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathrm{H}_{2} \mathrm{SiBH}_{2}$, triplet HSiB is $36 \mathrm{kcal} \mathrm{mol}^{-1}$ above triplet SiBH , and singlet HSiB (not included in our tables) is $95 \mathrm{kcal} \mathrm{mol}^{-1}$ above singlet SiBH.

Trends in relative stability between the normal and bridgebonded isomers of various $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ compounds are somewhat complicated. Figure 4 shows our calculated heats of formation for the SiBH_{n} species as a function of n for (1) the most stable isomers with a classical structure, (2) the most stable isomers with one bridged H bond, and (3) the most stable

Figure 5. Calculated heats of formation for $\mathrm{SiBH}_{n-1} \mathrm{Cl}(n \leq 5)$ compounds with the Cl bonded to the B as a function of n : squares, no bridged hydrogens (normal isomers); circles, one bridged hydrogen; triangles, two bridged hydrogens. Lines have been drawn between points to guide the eye.

Figure 6. Calculated heats of formation for $\mathrm{SiBH}_{n-1} \mathrm{Cl}(n \leq 5)$ compounds with the Cl bonded to the Si as a function of n : squares, no bridged hydrogens (normal isomers); circles; one bridged hydrogen; triangles, two bridged hydrogens. Lines have been drawn between points to guide the eye.
isomers with two bridged H bonds. Generally, the bridgebonded isomers are less stable than normal isomers, except for $n=3$. Figures 5 and 6 are similar plots for the $\mathrm{SiBH}_{n-1} \mathrm{Cl}$ (n ≤ 5) species with Cl on the B and the Si , respectively. These figures make it clear that $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$ and $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BCl}$ have extra stabilization.

A comparison of Figures 4 and 5 shows that Cl substitution on the boron raises the enthalpy of the bridged isomers relative to the normal isomers. For example, $\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$ is 12.0 kcal mol^{-1} above $\mathrm{H}_{3} \mathrm{SiBH}_{2}$, while $\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$ is $21.1 \mathrm{kcal} \mathrm{mol}^{-1}$ above $\mathrm{H}_{3} \mathrm{SiBHCl}$. For $n=3$, however, the bridged isomers are more stable than the normal isomers, so this Cl substitution brings the bridged and normal isomers closer in energy. HSiBH_{2} is $15.4 \mathrm{kcal} \mathrm{mol}^{-1}$ above $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$, while HSiBHCl is only $8.0 \mathrm{kcal} \mathrm{mol}^{-1}$ above $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BCl}$. $\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$ is 5.9 kcal mol^{-1} below HSiBH_{2}, while the Cl -substituted analogue, Si (H) BHCl , was not a minimum at our level of theory but rather opened up to HSiBHCl .

In contrast, comparing Figures 4 and 6 shows that Cl substitution on the Si appears to lower the enthalpy of the bridged isomers relative to the normal isomers. For example,

TABLE 3: Calculated $\Delta H_{\mathrm{f}}{ }^{\circ}$ at $\mathbf{0} \mathrm{K}$ for $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ Compounds at Various Levels of Theory (keal mol ${ }^{-1}$)

species	MP4	BAC-MP2	BAC-MP3	BAC-MP4	
				SDQ	SDTQ
$\mathrm{H}_{3} \mathrm{SiBH}_{2}$	64.7	38.6	38.6	38.6	38.6
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	77.5	52.5	52.7	52.0	51.0
$\mathrm{H}_{2} \mathrm{SiBH}_{2}$	86.4	63.2	63.9	64.1	63.9
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	95.0	73.1	74.2	73.5	72.6
$\mathrm{HSi}(\mathrm{H}) \mathrm{BH}_{2}$	99.4	76.7	77.7	77.3	76.3
$\mathrm{H}_{3} \mathrm{SiBH}$	110.7	85.4	86.4	86.8	87.0
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	125.6	101.7	102.6	102.4	101.6
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	91.2	71.2	71.8	72.3	70.7
$\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$	98.8	81.9	81.2	81.0	79.9
$\mathrm{HSiBH}_{2}{ }^{1} \mathrm{~A}^{\prime}$	105.3	87.8	86.7	86.2	85.8
$\mathrm{H}_{2} \mathrm{SiBH}{ }^{1} \mathrm{~A}_{1}$	117.4	95.6	95.0	95.4	94.5
$\mathrm{HSiBH}_{2}{ }^{3} \mathrm{~A}^{\prime \prime}$	114.0	95.6	96.8	97.0	96.8
$\mathrm{H}_{2} \mathrm{SiBH}{ }^{3} \mathrm{~A}^{\prime \prime}$	130.7	108.9	110.1	110.8	110.9
$\mathrm{H}_{3} \mathrm{SiB}$	147.0	123.4	121.8	121.0	120.7
$\mathrm{Si}\left(\mathrm{H}_{3}\right) \mathrm{B}$	144.9	123.9	124.5	124.6	122.4
SiBH_{2}	116.4	105.3	104.8	104.5	104.1
HSiBH	130.5	116.9	116.6	116.5	115.7
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{B}$	140.5	119.6	121.4	121.6	120.4
$\mathrm{H}_{2} \mathrm{SiB}$	162.5	147.6	147.2	147.1	145.5
SiBH ${ }^{3} \Sigma^{-}$	134.0	123.4	123.3	124.0	123.5
SiBH ${ }^{1} \Delta$	151.9	135.0	133.2	132.9	131.9
$\mathrm{HSiB}{ }^{3} \mathrm{~A}^{\prime \prime}$	171.0	160.5	160.4	160.6	159.7
SiB	208.4	187.7	189.5	189.0	187.8
$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{3}$	104.4	74.7	75.5	75.4	73.2
$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{H}_{2}$	110.4	82.8	84.1	85.0	83.3
$\mathrm{HSiBH}_{2} \rightarrow \mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$	100.3	83.9	83.1	82.8	81.8
$\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2} \rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	96.7	79.2	79.0	79.0	77.8
$\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{BH}_{2}$	90.4	48.7	49.1	49.2	49.0
$\mathrm{HB}\left(\mathrm{SiH}_{3}\right)_{2}$	95.2	51.7	51.8	51.8	51.7
$\mathrm{H}_{2} \mathrm{SiBHSiH}_{3}$	115.1	74.5	75.4	75.7	75.3
$\mathrm{H}_{3} \mathrm{SiBSiH}_{3}$	137.7	95.1	95.7	95.9	96.2
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}_{3}$	116.6	78.7	80.1	80.7	78.8
$-\mathrm{H}_{2} \mathrm{SiBHSiH}_{2}-$ (cyc)	121.1	81.7	84.3	85.3	82.4
$\mathrm{Si}(\mathrm{H}) \mathrm{BHSiH}_{3}$	121.6	87.1	87.7	87.8	86.0
$\mathrm{H}_{3} \mathrm{SiSiBH}_{2}$	127.2	94.2	94.1	94.0	92.8
$\mathrm{HSiBHSiH}_{3}$	133.0	98.4	97.7	97.3	96.6
$\mathrm{H}_{3} \mathrm{SiSiHBH}$	138.8	100.5	100.7	101.3	100.0
$\mathrm{H}_{2} \mathrm{SiBSiH}_{3}$	142.7	102.8	102.6	103.0	101.9
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}_{2}$	147.6	112.8	115.0	115.6	113.7
$-\mathrm{H}_{2} \mathrm{SiBHSiH}-$ (cyc)	153.4	114.6	115.9	115.6	114.9
$-\mathrm{H}_{2} \mathrm{SiBSiH}_{2}-$ (cyc)	168.7	127.2	130.2	131.0	129.2
$\mathrm{HSiBHSiH}_{2}$	162.2	128.9	129.7	129.5	128.8
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BHSiH}$	174.3	141.3	142.9	142.0	140.5
$\mathrm{HSi}(\mathrm{H}) \mathrm{BHSiH}$	178.0	143.9	145.3	144.7	143.3
$-\mathrm{Si}(\mathrm{H}) \mathrm{SiBH}_{2}-$ (cyc)	130.4	99.7	103.6	104.5	99.3
- $\mathrm{HSiBHSiH}-$ (cyc)	139.2	100.9	103.2	104.7	102.3
$-\mathrm{Si}(\mathrm{H}) \mathrm{BH}(\mathrm{H}) \mathrm{Si}-$ (cyc)	137.8	107.1	109.7	109.9	106.0
- $\mathrm{HSiSi}(\mathrm{H}) \mathrm{BH}-$ (cyc)	139.3	106.8	109.2	109.8	106.3
$-\mathrm{SiBHSiH}_{2}-$ (cyc)	142.7	110.4	113.3	114.4	109.9
$\mathrm{H}_{2} \mathrm{BSi}(\mathrm{H}) \mathrm{Si}$	148.4	122.4	122.5	122.7	119.8
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}$	160.2	130.3	131.0	131.3	128.8
$\mathrm{Si}(\mathrm{H}) \mathrm{BHSiH}$	166.0	139.0	138.4	137.9	135.7
$\mathrm{HSiBSiH}_{2}$	170.6	140.6	140.2	140.3	137.7
HSiBHSiH	171.9	145.6	144.0	143.2	141.8
$\mathrm{H}_{2} \mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2}$	97.7	64.7	65.0	65.0	64.9
$\mathrm{HSi}\left(\mathrm{BH}_{2}\right)_{2}$	114.1	84.0	84.9	85.2	85.0
$\mathrm{HBSiH}_{2} \mathrm{BH}_{2}$	143.9	111.8	113.0	113.4	113.5
$-\mathrm{HB}(\mathrm{H}) \mathrm{Si}(\mathrm{H}) \mathrm{BH}-$ (cyc)	97.7	65.7	70.4	70.7	67.4
$-\mathrm{HBBH}(\mathrm{H}) \mathrm{SiH}-$ (cyc)	113.1	78.5	84.0	84.6	81.5
$-\mathrm{HB}(\mathrm{H}) \mathrm{BHSiH}-$ (cyc)	116.2	83.7	88.5	89.8	86.3
$-\mathrm{H}_{2} \mathrm{SiBHBH}-$ (cyc)	119.7	87.0	92.0	91.6	88.2
$\mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2}$	122.6	99.9	100.2	100.0	98.4
$\mathrm{H}_{2} \mathrm{BBSiH}_{2}$	132.9	104.0	105.2	105.4	103.8
$\mathrm{H}_{2} \mathrm{BBHSiH}$	130.6	107.9	108.1	107.7	106.9
$\mathrm{H}_{3} \mathrm{SiBHCl}$	24.3	-3.6	-3.5	-3.7	-3.9
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2}$	30.1	-2.8	-2.2	-2.2	-2.5
$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	37.5	6.6	7.8	7.0	5.1
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$	45.7	18.8	19.4	18.7	17.5
$\mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2}$	49.4	21.7	23.4	21.7	19.1
$\mathrm{HClSiBH}_{2}$	55.1	25.6	26.7	26.6	26.1
$\mathrm{H}_{2} \mathrm{SiBHCl}$	50.6	25.8	26.7	26.7	26.3
$\mathrm{ClSi}(\mathrm{H}) \mathrm{BH}_{2}$	60.6	31.7	33.5	32.6	31.0
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$	63.8	40.1	41.6	40.9	39.7

TABLE 3 (Continued)

species	MP4	BAC-MP2	BAC-MP3	BAC-MP4	
				SDQ	SDTQ
$\mathrm{H}_{3} \mathrm{SiBCl}$	69.1	42.4	43.0	43.1	43.1
$\mathrm{HSi}(\mathrm{H}) \mathrm{BHCl}$	68.8	44.2	45.4	44.7	43.7
$\mathrm{H}_{2} \mathrm{ClSiBH}$	75.6	43.6	45.1	45.5	45.4
$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	84.0	54.2	56.2	55.8	54.0
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BCl}$	60.6	38.8	39.4	39.7	38.2
ClSiBH_{2}	65.9	43.2	43.5	42.8	41.3
HSiBHCl	67.6	48.1	47.3	46.7	46.0
$\mathrm{H}_{2} \mathrm{SiBCl}$	74.9	50.1	49.2	49.2	47.6
HClSiBH	89.3	57.8	57.3	57.8	56.8
$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{B}$	121.2	93.7	93.7	92.7	90.0
SiBCl_{2}	41.9	27.2	27.9	27.1	26.3
ClSiBCl	59.4	36.0	36.9	36.0	34.5
SiBHCl	80.4	67.6	67.5	67.0	66.4
HSiBCl	87.2	72.0	71.2	71.0	70.0
CISiBH	101.8	80.1	81.5	80.9	79.7
HCISiB	131.6	110.9	110.8	110.3	108.1
$\mathrm{SiBCl}^{3} \Sigma$	93.2	80.9	80.4	80.8	80.2
$\mathrm{SiBCl}^{1} \Sigma$	109.8	91.1	89.2	88.7	87.3
$\mathrm{CISiB}{ }^{1} \mathrm{~A}^{\prime}$	149.6	126.6	127.6	126.1	119.4
CISiB ${ }^{3} \Sigma^{-}$	175.7	151.2	153.0	153.6	152.4
$\mathrm{HClSi}: \mathrm{BH}_{3}$	64.8	40.8	40.5	39.8	38.6
$\mathrm{H}_{2} \mathrm{Si}: \mathrm{BH}_{2} \mathrm{Cl}$	67.5	47.9	46.5	46.1	45.6
$\mathrm{H}_{3} \mathrm{SiBHCl} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$	67.1	36.2	37.7	37.4	34.8
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$	77.4	41.4	43.2	42.0	38.2
$\mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2} \rightarrow \mathrm{SiHCl}+\mathrm{BH}_{3}$	61.6	38.1	39.0	37.5	35.2
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	79.8	45.4	46.4	46.4	44.0
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$	99.4	68.5	71.5	71.2	68.0
$\left[\mathrm{HClSi}(\mathrm{H}) \mathrm{BH}_{2}\right] \rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$	99.1	72.7	75.7	75.2	71.2

$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$ is only $7.1 \mathrm{kcal} \mathrm{mol}^{-1}$ above $\mathrm{H}_{2} \mathrm{ClSiBH}_{2}$, whereas $\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$ is $12.0 \mathrm{kcal} \mathrm{mol}^{-1}$ above $\mathrm{H}_{3} \mathrm{SiBH}_{2}$. However, the number of directly analogous molecules available for making such comparisons is very limited in this case.

Although the data are again limited, it also appears that silyl substitution on the B may lower the bridged isomers relative to the normal isomers. $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}_{3}$ is $18.0 \mathrm{kcal} \mathrm{mol}^{-1}$ below $\mathrm{HSiBHSiH}_{3}$, which is somewhat larger than the $15.4 \mathrm{kcal} \mathrm{mol}^{-1}$ separation between $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$ and HSiBH_{2}.
C. Bond Dissociation Enthalpies. Table 6 lists bond dissociation enthalpies (BDEs) for $\mathrm{Si}-\mathrm{H}, \mathrm{Si}-\mathrm{Cl}, \mathrm{B}-\mathrm{H}, \mathrm{B}-\mathrm{Cl}$, and $\mathrm{Si}-\mathrm{B}$ bonds obtained from the heats of formation in Table 4. Related molecules have been grouped to illustrate trends and patterns in the BDEs. A few BDEs for $\mathrm{Si}-\mathrm{H}-\mathrm{Cl}$ and $\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ compounds are included for comparison. Generally, only simple bond dissociation reactions involving the ground electronic state are included. Reactions involving a major rearrangement of the molecule are not included, i.e., reactions involving the interconversion of bridged and nonbridged species or cyclic and noncyclic species. Caution should thus be exercised in cases where the most stable isomer is a bridged or cyclic species. A few cases are included where the dissociation of a bridged species leads to a H atom and a new species with one fewer bridged bonds, as this is viewed as the dissociation of the three-center bond.

The BDEs in Table 6 for a given bond type vary significantly, although there are some notable trends. Overall, $\mathrm{Si}-\mathrm{H}$ bonds are weaker than $\mathrm{Si}-\mathrm{Cl}$ bonds, and $\mathrm{B}-\mathrm{H}$ bonds are weaker than $\mathrm{B}-\mathrm{Cl}$ bonds, as expected from BDEs in simpler molecules. $\mathrm{Si}-\mathrm{B}$ bonds are of the same magnitude as $\mathrm{Si}-\mathrm{H}$ bonds, and $\mathrm{Si}-\mathrm{Cl}$ bonds are of the same magnitude as $\mathrm{B}-\mathrm{H}$ bonds. BDEs for bridged H atoms are closer in magnitude to $\mathrm{Si}-\mathrm{H}$ BDEs rather than $\mathrm{B}-\mathrm{H}$ BDEs and have been placed in the table accordingly. They are also close to BDEs for bridged H bonds in Si compounds. The ΔH 's for $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{Si} \rightarrow \mathrm{Si}(\mathrm{H}) \mathrm{Si}+\mathrm{H}$ and $\mathrm{Si}(\mathrm{H}) \mathrm{Si} \rightarrow \mathrm{Si}_{2}+\mathrm{H}$ BDEs are 75.3 and $74.3 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively.

In many cases, BDEs involving species with bridge bonds are nearly the same as BDEs for species with the same number of nonbridged $\mathrm{Si}-\mathrm{H}$ bonds. For example, the $\mathrm{H}-\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$ and $\mathrm{H}-\mathrm{SiH}_{2} \mathrm{BH}_{2} \mathrm{BDEs}$ are 74.7 and $78.7 \mathrm{kcal} \mathrm{mol}^{-1}$, and the $\mathrm{H}-\mathrm{BH}\left(\mathrm{H}_{2}\right) \mathrm{SiCl}$ and $\mathrm{H}-\mathrm{BHSiH}_{2} \mathrm{Cl}$ BDEs are 102.2 and 100.8 kcal mol^{-1}, respectively. In other cases, there are large differences. In particular, the dissociation of species that results in the formation of $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$ and $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BCl}$ have exceptionally low BDEs as a result of the extreme stability of these dibridged species. For example, the $\mathrm{H}-\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$ and $\mathrm{HSi}-\mathrm{BH}\left(\mathrm{H}_{2}\right) \mathrm{Si}$ BDEs are only $22 \mathrm{kcal} \mathrm{mol}^{-1}$, while other $\mathrm{Si}-\mathrm{H}$ and $\mathrm{Si}-\mathrm{B}$ BDEs are in the range $50-90 \mathrm{kcal} \mathrm{mol}^{-1}$.

Substituting larger groups for H affects BDEs in the $\mathrm{Si}-\mathrm{B}-$ $\mathrm{H}-\mathrm{Cl}$ species in a variety of ways. In the saturated compounds, substituting a BH_{2} group for a H on the Si decreases the $\mathrm{Si}-\mathrm{X}$ $(\mathrm{X}=\mathrm{H}, \mathrm{Cl})$ BDEs. The $\mathrm{H}-\mathrm{SiH}_{3}, \mathrm{H}-\mathrm{SiH}_{2} \mathrm{BH}_{2}$, and $\mathrm{H}-\mathrm{SiH}-$ $\left(\mathrm{BH}_{2}\right)_{2}$ BDEs decrease from 91.3 , to 78.7 , to $73.1 \mathrm{kcal} \mathrm{mol}^{-1}$, and the $\mathrm{Cl}-\mathrm{SiH}_{3}$ and $\mathrm{Cl}-\mathrm{SiH}_{2} \mathrm{BH}_{2}$ BDEs drop from 108.4 to $96.1 \mathrm{kcal} \mathrm{mol}^{-1}$. Note that this results in $\mathrm{Si}-\mathrm{H}$ bonds that are considerably weaker than those in analogous molecules. For example, multiple NH_{2}-for- H^{15} and CH_{3}-for- H^{16} substitutions increase the $\mathrm{Si}-\mathrm{H}$ BDEs in the saturated compounds from 91.3 $\mathrm{kcal} \mathrm{mol}^{-1}$ to 98.2 and $94.6 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. The unsaturated $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ compounds show a pattern that differs from both the saturated $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ compounds and other unsaturated silicon compounds. The $\mathrm{H}-\mathrm{SiH}_{2}, \mathrm{H}-\mathrm{SiHBH}_{2}$, and $\mathrm{H}-\mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2}$ BDEs are $69.5,74.5$, and 66.3 , respectively, and the BDEs for $\mathrm{Cl}-\mathrm{SiH}_{2}$ and $\mathrm{Cl}-\mathrm{SiH}_{2} \mathrm{BH}_{2}$ increase from 85.9 to $89.0 \mathrm{kcal} \mathrm{mol}^{-1}$. For comparison, the $\mathrm{H}-\mathrm{SiH}_{2}, \mathrm{H}-\mathrm{SiHCH}_{3}$, and $\mathrm{H}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$ BDEs decrease from 69.5, to 67.9 , to 66.0 kcal mol^{-1}, respectively. ${ }^{16}$ Substitutions on the B also alter $\mathrm{B}-\mathrm{H}$ BDEs in a manner reminiscent of the effect BH_{2}-for- H substitutions had on $\mathrm{Si}-\mathrm{H}$ BDEs. The $\mathrm{H}-\mathrm{BH}_{2}, \mathrm{H}-\mathrm{BHSiH}_{3}$, and $\mathrm{H}-\mathrm{B}\left(\mathrm{SiH}_{3}\right)_{2}$ BDEs decrease from 105.3, to 101.4, to 97.4 kcal mol^{-1}, while the $\mathrm{H}-\mathrm{BH}$ and $\mathrm{H}-\mathrm{BSiH}_{3} \mathrm{BDEs}$ increase from 78.9 to $86.7 \mathrm{kcal} \mathrm{mol}^{-1}$.

TABLE 4: Calculated Heats of Formation at 298 K from the BAC-MP4(SDTQ) Level of Theory, with Error Estimates, ${ }^{a}$ (kcal $\mathbf{m o l}^{-1}$) and Previously Published Comparisons with Literature for Related Species

species		calc $\Delta H_{\mathrm{f}}{ }^{\circ}$	error est ${ }^{a}$	species	calc $\Delta H_{\mathrm{f}}{ }^{\circ}$	error est ${ }^{a}$
$\mathrm{H}_{3} \mathrm{SiBH}_{2}{ }^{\text {b }}$		35.6	1.0	$\mathrm{H}_{3} \mathrm{SiBHCl}$	-6.6	1.1
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$		47.6	2.2	$\mathrm{H}_{2} \mathrm{ClSiBH}_{2}$	-4.9	1.1
$\mathrm{H}_{2} \mathrm{SiBH}_{2}$		62.2	1.0	$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	2.2	3.5
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$		70.2	2.2	$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$	14.5	2.4
$\mathrm{HSi}(\mathrm{H}) \mathrm{BH}_{2}$		74.2	1.9	$\mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2}$	16.4	5.1
$\mathrm{H}_{3} \mathrm{SiBH}$		84.9	1.2	$\mathrm{HClSiBH}_{2}$	24.6	1.3
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}$		99.3	1.6	$\mathrm{H}_{2} \mathrm{SiBHCl}$	24.8	1.1
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$		69.2	2.1	$\mathrm{ClSi}(\mathrm{H}) \mathrm{BH}_{2}$	29.3	3.2
$\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$		78.7	2.0	$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$	37.7	2.4
$\mathrm{HSiBH}_{2}{ }^{1} \mathrm{~A}^{\prime}$		84.6	1.6	$\mathrm{H}_{3} \mathrm{SiBCl}$	41.4	1.0
$\mathrm{H}_{2} \mathrm{SiBH}{ }^{1} \mathrm{~A}_{1}$		93.4	1.5	$\mathrm{HSi}(\mathrm{H}) \mathrm{BHCl}$	41.9	2.2
$\mathrm{HSiBH}_{2}{ }^{3} \mathrm{~A}^{\prime \prime}$		95.5	1.0	$\mathrm{H}_{2} \mathrm{ClSiBH}$	43.8	1.0
$\mathrm{H}_{2} \mathrm{SiBH}^{3} \mathrm{~A}^{\prime \prime}$		109.8	1.2	$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	52.3	2.9
$\mathrm{H}_{3} \mathrm{SiB}$		119.5	2.0	$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BCl}$	37.2	2.1
$\mathrm{Si}\left(\mathrm{H}_{3}\right) \mathrm{B}$		120.7	3.3	ClSiBH_{2}	40.6	2.8
SiBH_{2}		103.6	1.3	HSiBHCl	45.2	1.9
HSiBH		115.6	1.5	$\mathrm{H}_{2} \mathrm{SiBCl}$	47.1	2.6
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{B}$		120.0	2.0	HClSiBH	56.1	1.9
$\mathrm{H}_{2} \mathrm{SiB}$		145.3	2.5	$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{B}$	89.0	4.9
$\operatorname{SiBH}^{3} \Sigma^{-}$		123.7	1.1	SiBCl_{2}	26.6	2.1
SiBH ${ }^{1} \Delta$		132.1	2.8	ClSiBCl	35.2	3.1
$\mathrm{HSiB}{ }^{3} \mathrm{~A}^{\prime \prime}$		160.2	1.5	SiBHCl	66.2	1.6
SiB		188.8	3.5	HSiBCl	70.2	1.9
$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{3}$		70.1	3.5	ClSiBH	79.9	2.4
$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{H}_{2}$		80.3	2.1	$\mathrm{HClSiB}^{\text {a }}$	108.3	3.6
$\mathrm{HSiBH}_{2} \rightarrow \mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$		80.4	1.9	SiBCl ${ }^{3} \Sigma$	80.9	1.2
$\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2} \rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$		76.1	2.1	SiBCl ${ }^{1} \Sigma$	88.1	3.2
				ClSiB ${ }^{1} \mathrm{~A}^{\prime}$	120.2	11.0
$\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{BH}_{2}$		44.8	1.0	$\mathrm{ClSiB}^{3} \Sigma^{-}$	152.9	1.8
$\mathrm{HB}\left(\mathrm{SiH}_{3}\right)_{2}$		47.4	1.0	$\mathrm{HClSi}: \mathrm{BH}_{3}$	37.3	2.6
$\mathrm{H}_{2} \mathrm{SiBHSiH}_{3}$		71.9	1.1	$\mathrm{H}_{2} \mathrm{Si}: \mathrm{BH}_{2} \mathrm{Cl}$	44.1	1.5
$\mathrm{H}_{3} \mathrm{SiBSiH}_{3}$		92.7	1.2	$\mathrm{H}_{3} \mathrm{SiBHCl} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$	32.1	4.0
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}_{3}$		75.9	2.4	$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$	35.5	6.4
$-\mathrm{H}_{2} \mathrm{SiBHSiH}_{2}-$ (cyc)		79.4	3.6	$\mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2} \rightarrow \mathrm{SiHCl}+\mathrm{BH}_{3}$	32.7	4.6
$\mathrm{Si}(\mathrm{H}) \mathrm{BHSiH}_{3}$		83.1	2.7	$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	41.6	3.6
$\mathrm{H}_{3} \mathrm{SiSiBH}_{2}$		90.0	2.2	$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$	65.7	4.9
$\mathrm{HSiBHSiH}_{3}$		93.9	1.8	$\left[\mathrm{HClSi}(\mathrm{H}) \mathrm{BH}_{2}\right] \rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$	68.8	6.0
$\mathrm{H}_{3} \mathrm{SiSiHBH}$		97.3	1.9			
$\mathrm{H}_{2} \mathrm{SiBSiH}_{3}$		99.2	1.8	$\mathrm{H}_{2} \mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2}$	61.6	1.0
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}_{2}$		111.7	2.5	$\mathrm{HSi}\left(\mathrm{BH}_{2}\right)_{2}$	82.6	1.0
$-\mathrm{H}_{2} \mathrm{SiBHSiH}-$ (cyc)		112.8	1.6	$\mathrm{HBSiH}_{2} \mathrm{BH}_{2}$	111.1	1.2
$-\mathrm{H}_{2} \mathrm{SiBSiH}_{2}-$ (cyc)		127.0	2.4	$-\mathrm{HB}(\mathrm{H}) \mathrm{Si}(\mathrm{H}) \mathrm{BH}-$ (cyc)	65.1	4.6
$\mathrm{HSiBHSiH}_{2}$		127.2	1.7	$-\mathrm{HBBH}(\mathrm{H}) \mathrm{SiH}-$ (cyc)	79.3	4.2
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BHSiH}$		138.3	3.2	$-\mathrm{HB}(\mathrm{H}) \mathrm{BHSiH}-$ (cyc)	84.0	4.2
$\mathrm{HSi}(\mathrm{H}) \mathrm{BHSiH}$		141.5	2.8	$-\mathrm{H}_{2} \mathrm{SiBHBH}-(\mathrm{cyc})$	86.5	5.2
$-\mathrm{Si}(\mathrm{H}) \mathrm{SiBH}_{2}-$ (cyc)		98.0	6.8	$\mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2}$	96.8	2.5
$-\mathrm{HSiBHSiH}-$ (cyc)		100.7	2.7	$\mathrm{H}_{2} \mathrm{BBSiH}_{2}$	102.2	2.4
$-\mathrm{Si}(\mathrm{H}) \mathrm{BH}(\mathrm{H}) \mathrm{Si}-$		104.2	5.5	$\mathrm{H}_{2} \mathrm{BBHSiH}$	105.3	1.8
$-\mathrm{HSiSi}(\mathrm{H}) \mathrm{BH}-$ (cyc)		105.2	4.7			
$-\mathrm{SiBHSiH}_{2}-$ (cyc)		109.0	5.7			
$\mathrm{H}_{2} \mathrm{BSi}(\mathrm{H}) \mathrm{Si}$		118.6	4.1			
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}$		127.6	3.6			
$\mathrm{Si}(\mathrm{H}) \mathrm{BHSiH}$		134.6	3.7			
$\mathrm{HSiBSiH}_{2}$		136.8	3.9			
HSiBHSiH		140.9	3.0			
species cal	calc $\Delta H_{\mathrm{f}}{ }^{\circ}$		lit. $\Delta H_{\mathrm{f}}{ }^{\circ}{ }^{\text {c }}$	species \quad calc $\Delta H_{\mathrm{f}}{ }^{\circ}$		lit. $\Delta H_{\mathrm{f}}{ }^{\circ}{ }^{\text {c }}$
$\mathrm{SiH}_{4}{ }^{\text {b }}$	8.2		8.2, 8.3	$\mathrm{Si}_{2} \mathrm{H}_{6}{ }^{\text {a }}$		19.1
SiH_{3}	47.4		46.4-48.5, ${ }^{\text {d }} 54.2$	$\mathrm{H}_{2} \mathrm{SiSiH}_{3} \quad 55.4$		53.3
SiH_{2}	64.8		$63.6-69.1^{d}$	$\mathrm{HSiSiH}_{3} \quad 74.9$		$74.6{ }^{e}$
SiH	91.0		90.0	$\mathrm{Si}_{3} \mathrm{H}_{8} \quad 28.4$		28.9
$\mathrm{SiH}_{3} \mathrm{Cl}$	-32.0		$-33.9-48.0$			
$\mathrm{SiH}_{2} \mathrm{Cl}_{2}$	-74.4		-76.6--80.0	$\mathrm{BH}_{3}{ }^{\text {b }}$		21-25.5
$\mathrm{SiHCl}_{3} \quad$	-117.1		$-115.1--118.6$	$\begin{array}{ll}\mathrm{BH}_{2} & 75.6\end{array}$		45.7-76.1
$\mathrm{SiCl}_{4}{ }^{\text {a }}$	-158.4		-158.4	BH		105.8-108.2
SiCl_{3}	-76.0		$-75.5--93.3$	$\mathrm{BH}_{2} \mathrm{Cl} \quad-20.3$		-19.3
SiCl_{2}	-36.2		$-39.5-40.3$	$\mathrm{BHCl} \quad 32.2$		31.3
SiCl	37.8		$37^{f}-47.4$	$\mathrm{BCl}_{3}{ }^{\text {a }}$ - -96.7		$-96.6--97.5$
$\mathrm{SiH}_{2} \mathrm{Cl}$	7.9			$\mathrm{BCl}_{2} \quad-7.5$		-14.6, -19
SiHCl	15.8			$\mathrm{BCl} \quad 43.7$		$33.8-41.2$
HCl	-22.0		-22.06	B 134.9		
Si	107.4					
H	52.1					
Cl	29.0					

${ }^{a}$ See section II for discussion of error estimates. ${ }^{b}$ Reference compound for BAC. ${ }^{c}$ See refs $12-14,20$, and/or 42 for discussions of most of the literature values. ${ }^{d}$ See: Jasinski, J. M.; Becerra, R.; Walsh, R. Chem. Rev. 1995, 95, 1203. ${ }^{e}$ See: Becerra, R.; Walsh, R. J. Phys. Chem. 1987, 91, 5765. ${ }^{f}$ See: Walsh, R. J. Chem. Soc., Faraday Trans. 1 1983, 79, 2233.

TABLE 5: Calculated Thermochemical Parameters at Various Temperatures (K)

species	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }^{\text {a }}$		$S^{\circ}{ }^{\text {b }}$	$\Delta G_{\mathrm{f}}{ }^{\text {a }}{ }^{\text {a }}$					
	0 K	298 K		300 K	600 K	1000 K	1500 K	2000 K	2500 K
$\mathrm{H}_{3} \mathrm{SiBH}_{2}$	38.6	35.6	67.2	40.5	45.8	54.1	63.9	75.8	89.2
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	51.0	47.6	61.4	54.3	62.0	73.8	88.2	104.7	122.7
$\mathrm{H}_{2} \mathrm{SiBH}_{2}$	63.9	62.2	67.3	62.4	63.1	65.0	67.0	71.3	77.3
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	72.6	70.2	60.6	72.4	75.5	81.1	87.9	97.0	107.8
$\mathrm{HSi}(\mathrm{H}) \mathrm{BH}_{2}$	76.3	74.1	62.8	75.7	78.0	82.0	86.8	93.9	102.6
$\mathrm{H}_{3} \mathrm{SiBH}$	87.0	84.9	67.9	84.9	85.2	86.4	87.7	91.2	96.3
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	101.6	99.3	62.1	101.1	103.6	108.1	113.5	121.2	130.5
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	70.7	69.2	58.4	67.5	66.3	65.9	65.4	67.4	71.2
$\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$	79.9	78.7	60.4	76.3	74.4	72.9	70.8	71.3	73.5
$\mathrm{HSiBH}_{2}{ }^{1} \mathrm{~A}^{\prime}$	85.8	84.6	61.1	82.1	79.9	77.8	75.0	74.8	76.4
$\mathrm{H}_{2} \mathrm{SiBH}^{1} \mathrm{~A}_{1}$	94.5	93.4	59.8	91.2	89.4	87.8	85.8	86.2	88.5
$\mathrm{HSiBH}_{2}{ }^{3} \mathrm{~A}^{\prime \prime}$	96.8	95.5	62.3	92.6	90.1	87.7	84.6	84.1	85.5
$\mathrm{H}_{2} \mathrm{SiBH}^{3} \mathrm{~A}^{\prime \prime}$	110.9	109.8	63.5	106.5	103.5	100.3	96.1	94.5	94.7
$\mathrm{H}_{3} \mathrm{SiB}$	120.7	119.5	58.8	117.6	116.1	115.0	113.5	114.5	117.2
$\mathrm{Si}\left(\mathrm{H}_{3}\right) \mathrm{B}$	122.4	120.7	58.2	119.0	118.0	117.8	117.5	119.6	123.5
SiBH_{2}	104.1	103.6	58.6	97.2	91.0	83.8	74.9	68.9	64.8
HSiBH	115.7	115.6	61.9	108.1	100.8	91.8	80.7	72.2	65.8
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{B}$	120.4	120.0	60.4	113.0	106.3	98.1	88.0	80.6	75.1
$\mathrm{H}_{2} \mathrm{SiB}$	145.5	145.3	61.2	138.0	130.9	122.3	111.5	103.5	97.4
SiBH ${ }^{3} \Sigma^{-}$	123.5	123.7	54.7	113.7	103.9	91.4	76.0	63.4	52.9
SiBH ${ }^{1} \Delta$	131.9	132.1	52.3	122.9	113.7	102.3	88.2	76.9	67.7
$\mathrm{HSiB}{ }^{3} \mathrm{~A}^{\prime \prime}$	159.7	160.2	59.7	148.7	137.3	123.0	105.2	90.5	77.9
SiB	187.8	188.8	52.1	175.0	161.1	143.5	121.7	103.0	86.5
$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{3}$	73.2	70.1	62.7	76.4	83.5	94.5	108.3	124.4	142.3
$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{H}_{2}$	83.3	80.3	63.3	86.4	93.4	104.0	117.1	132.5	149.5
$\mathrm{HSiBH}_{2} \rightarrow \mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$	81.8	80.4	59.5	78.3	76.9	76.3	75.9	78.4	82.9
$\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2} \rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	77.8	76.1	58.0	74.5	73.6	73.9	74.8	78.4	84.2
$\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{BH}_{2}$	49.0	44.8	80.8	56.3	68.4	85.6	106.1	130.4	157.3
$\mathrm{HB}\left(\mathrm{SiH}_{3}\right)_{2}$	51.7	47.4	83.0	58.2	69.8	86.4	105.9	129.3	155.0
$\mathrm{H}_{2} \mathrm{SiBHSiH}_{3}$	75.3	71.9	80.3	78.9	86.4	97.3	110.2	127.3	146.8
$\mathrm{H}_{3} \mathrm{SiBSiH}_{3}$	96.2	92.7	84.4	98.5	104.8	114.3	125.4	140.7	158.6
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}_{3}$	78.8	75.9	74.0	80.1	84.9	92.6	101.6	115.0	131.1
$-\mathrm{H}_{2} \mathrm{SiBHSiH}_{2}-(\mathrm{cyc})$	82.4	79.4	72.7	84.1	89.3	97.5	107.2	121.3	138.1
$\mathrm{Si}(\mathrm{H}) \mathrm{BHSiH}_{3}$	86.0	83.1	75.4	86.9	91.5	98.9	107.2	119.8	135.3
$\mathrm{H}_{3} \mathrm{SiSiBH}_{2}$	92.8	90.0	79.2	92.7	95.7	100.9	106.8	117.1	130.4
$\mathrm{HSiBHSiH}_{3}$	96.6	93.9	77.3	97.2	100.8	106.6	113.1	124.0	137.6
$\mathrm{H}_{3} \mathrm{SiSiHBH}$	100.0	97.3	77.0	100.7	104.4	110.4	117.3	128.6	142.8
$\mathrm{H}_{2} \mathrm{SiBSiH}_{3}$	101.9	99.2	77.5	102.4	105.9	111.6	118.2	129.2	143.0
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}_{2}$	113.7	111.7	74.7	111.1	111.1	112.0	112.7	117.9	126.2
$-\mathrm{H}_{2} \mathrm{SiBHSiH}^{-}$(cyc)	114.9	112.8	1.6	112.8	113.3	114.9	116.5	122.7	131.9
$-\mathrm{H}_{2} \mathrm{SiBSiH}_{2}-$ (cyc)	129.2	127.0	2.4	127.0	127.5	129.1	130.8	137.0	146.3
$\mathrm{HSiBHSiH}_{2}$	128.8	127.2	77.2	125.9	124.9	124.1	122.6	125.8	132.0
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BHSiH}$	140.5	138.3	76.0	137.3	136.6	137.0	137.2	142.0	149.8
HSi(H)BHSiH	143.3	141.5	75.8	140.6	140.1	140.2	139.9	144.1	151.3
$-\mathrm{Si}(\mathrm{H}) \mathrm{SiBH}_{2}-(\mathrm{cyc})$	99.3	98.0	68.3	94.6	91.7	88.9	85.5	86.9	91.5
- $\mathrm{HSiBHSiH}-$ (cyc)	102.3	100.7	67.7	97.5	94.8	92.1	88.7	90.1	94.8
$-\mathrm{Si}(\mathrm{H}) \mathrm{BH}(\mathrm{H}) \mathrm{Si}-$ (cyc)	106.0	104.2	67.1	101.2	98.8	97.0	94.7	97.3	103.1
$-\mathrm{HSiSi}(\mathrm{H}) \mathrm{BH}-$ (cyc)	106.3	105.2	74.0	100.1	95.4	90.3	83.8	82.2	83.9
$-\mathrm{SiBHSiH}_{2}-$ (cyc)	109.9	109.0	73.7	104.0	99.3	94.2	87.7	86.1	87.8
$\mathrm{H}_{2} \mathrm{BSi}(\mathrm{H}) \mathrm{Si}$	119.8	118.6	72.1	114.1	110.0	105.6	99.8	98.8	101.0
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}$	128.8	127.5	71.0	123.4	119.6	115.7	110.8	110.6	113.5
$\mathrm{Si}(\mathrm{H}) \mathrm{BHSiH}$	135.7	134.7	72.6	130.0	125.5	120.3	113.6	111.6	112.8
$\mathrm{HSiBSiH}_{2}$	137.7	136.8	73.0	132.0	127.6	122.5	115.9	114.0	115.4
HSiBHSiH	141.8	140.9	73.0	136.1	131.6	126.3	119.4	117.2	118.2
$\mathrm{H}_{2} \mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2}$	64.9	61.6	77.5	68.6	75.6	86.2	98.4	112.8	129.0
$\mathrm{HSi}\left(\mathrm{BH}_{2}\right)_{2}$	85.0	82.6	73.9	86.0	89.8	96.1	103.0	112.3	123.4
$\mathrm{HBSiH}_{2} \mathrm{BH}_{2}$	113.5	111.1	77.6	113.4	115.4	119.2	123.1	129.4	137.5
$-\mathrm{HB}(\mathrm{H}) \mathrm{Si}(\mathrm{H}) \mathrm{BH}-$ (cyc)	67.4	65.1	65.7	66.3	68.0	71.7	75.9	82.7	91.7
$-\mathrm{HBBH}(\mathrm{H}) \mathrm{SiH}-$ (cyc)	81.4	79.3	66.2	80.3	81.9	85.3	89.0	95.4	103.9
$-\mathrm{HB}(\mathrm{H}) \mathrm{BHSiH}-$ (cyc)	86.3	84.0	65.3	85.3	87.2	91.0	95.3	102.3	111.3
$-\mathrm{H}_{2} \mathrm{SiBHBH}-$ (cyc)	88.2	86.5	69.8	86.4	86.8	88.2	89.6	93.5	99.5
$\mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2}$	98.4	96.8	70.4	96.5	96.8	97.9	98.8	102.1	107.6
$\mathrm{H}_{2} \mathrm{BBSiH}_{2}$	103.8	102.2	68.4	102.5	103.3	105.4	107.3	111.9	118.6
$\mathrm{H}_{2} \mathrm{BBHSiH}$	106.9	105.3	70.2	105.1	105.2	106.2	107.0	110.3	115.8
$\mathrm{H}_{3} \mathrm{SiBHCl}$	-3.9	-6.5	75.0	-0.6	5.6	14.7	25.5	38.4	52.7
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2}$	-2.5	-4.9	73.5	1.4	8.1	17.7	29.2	42.8	57.8
$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	5.1	2.2	70.1	9.6	17.7	29.8	44.4	61.2	79.4
$\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$	17.5	14.5	69.4	22.1	30.5	42.9	58.0	75.1	93.7
$\mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2}$	19.1	16.4	70.1	23.7	31.8	43.5	57.8	74.1	91.9
$\mathrm{HCISiBH}_{2}$	26.1	24.6	72.6	26.5	28.8	32.5	36.8	43.3	51.5
$\mathrm{H}_{2} \mathrm{SiBHCl}$	26.3	24.8	72.5	26.8	29.1	32.8	37.0	43.5	51.8
$\mathrm{ClSi}(\mathrm{H}) \mathrm{BH}_{2}$	31.0	29.3	71.8	31.5	34.1	38.4	43.5	50.8	59.9
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$	39.7	37.7	70.1	40.4	43.8	49.4	56.1	65.2	76.0

TABLE 5: (continued)

species	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }^{a}$		$S^{\circ}{ }^{\text {b }}$	$\Delta G_{\mathrm{f}}{ }^{\circ}{ }^{a}$					
	0 K	298 K		300 K	600 K	1000 K	1500 K	2000 K	2500 K
$\mathrm{H}_{3} \mathrm{SiBCl}$	43.1	41.4	74.5	42.8	44.3	47.0	50.0	55.3	62.2
$\mathrm{HSi}(\mathrm{H}) \mathrm{BHCl}$	43.7	41.9	71.1	44.3	47.2	51.8	57.2	64.9	74.1
$\mathrm{H}_{2} \mathrm{ClSiBH}$	45.4	43.8	72.8	45.7	47.9	51.3	55.0	61.0	68.6
$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}$	54.0	52.3	71.3	54.6	57.4	61.9	67.2	74.9	84.1
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BCl}$	38.2	37.2	66.9	36.2	35.6	35.6	35.5	37.9	42.1
ClSiBH_{2}	41.3	40.6	70.5	38.6	36.7	34.8	32.2	32.3	34.2
HSiBHCl	46.0	45.2	69.9	43.4	41.7	40.0	37.7	38.0	40.1
$\mathrm{H}_{2} \mathrm{SiBCl}$	47.6	47.1	70.3	45.0	43.2	41.3	38.8	38.7	40.5
HClSiBH	56.8	56.1	71.5	53.8	51.6	49.3	46.3	45.9	47.3
$\mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{B}$	90.0	89.0	69.3	87.3	85.9	84.8	83.2	84.0	86.6
SiBCl_{2}	26.3	26.6	75.5	21.7	16.7	10.5	2.7	-2.4	-5.4
ClSiBCl	34.5	35.2	80.2	28.9	22.4	14.2	3.9	-3.6	-9.2
SiBHCl	66.4	66.2	68.9	60.0	53.9	46.6	37.5	31.2	26.9
HSiBCl	70.0	70.2	70.0	63.6	57.1	48.9	38.8	31.3	25.8
ClSiBH	79.7	79.9	71.0	73.0	66.2	57.6	46.8	38.9	32.9
HClSiB	108.1	108.3	70.7	101.5	94.8	86.3	75.7	67.8	62.0
SiBCl ${ }^{3} \Sigma$	80.2	80.9	63.6	71.6	62.2	50.1	35.2	23.0	13.0
SiBCl ${ }^{1} \Sigma$	87.4	88.1	61.2	79.5	70.8	59.8	46.0	35.2	26.3
ClSiB ${ }^{1} \mathrm{~A}^{\prime}$	119.4	120.2	66.8	109.9	99.6	86.5	70.3	57.1	46.1
ClSiB ${ }^{3} \Sigma^{-}$	152.4	152.9	62.7	143.9	134.9	123.6	109.6	98.4	89.3
$\mathrm{HClSi}: \mathrm{BH}_{3}$	38.6	37.3	93.6	37.7	38.0	39.0	39.8	42.7	47.0
$\mathrm{H}_{2} \mathrm{Si}: \mathrm{BH}_{2} \mathrm{Cl}$	45.6	44.1	84.7	47.1	50.2	54.9	60.2	67.6	76.4
$\mathrm{H}_{3} \mathrm{SiBHCl} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$	34.8	32.1	71.0	39.2	47.0	58.6	72.8	89.5	107.8
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$	38.2	35.5	69.5	43.0	51.2	63.3	78.3	95.8	114.9
$\mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2} \rightarrow \mathrm{SiHCl}+\mathrm{BH}_{3}$	35.2	32.7	72.4	39.3	46.7	57.8	71.6	87.9	105.8
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	44.0	41.6	73.0	48.1	55.2	65.7	78.6	94.0	111.0
$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$	68.0	65.7	75.0	71.6	78.0	87.3	98.6	112.2	127.6
$\left[\mathrm{HClSi}(\mathrm{H}) \mathrm{BH}_{2}\right] \rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$	71.2	68.8	72.4	75.5	82.7	93.2	106.2	121.4	138.3
${ }^{a}$ In kcal mol ${ }^{-1} .{ }^{b}$ In cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$.									

Substituting SiH_{3} for H on B had little effect on more distant $\mathrm{Si}-\mathrm{H}$ BDEs. The $\mathrm{H}-\mathrm{SiH}_{2} \mathrm{BH}_{2}$ and $\mathrm{H}-\mathrm{SiH}_{2} \mathrm{BHSiH}_{3}$ BDEs are 78.7 and $76.6 \mathrm{kcal} \mathrm{mol}^{-1}$, and $\mathrm{H}-\mathrm{SiHBH}_{2}$ and $\mathrm{H}-\mathrm{SiHBHSiH}_{3}$ are 74.5 and $74.1 \mathrm{kcal} \mathrm{mol}^{-1}$. Likewise, such substitutions had minor effects on $\mathrm{Si}-\mathrm{B}$ BDEs. The $\mathrm{H}_{3} \mathrm{Si}-\mathrm{BH}_{2}, \mathrm{H}_{2} \mathrm{Si}-\mathrm{BH}_{2}$, and $\mathrm{HSi}-\mathrm{BH}_{2}$ BDEs are $87.4,78.2$, and $82.0 \mathrm{kcal} \mathrm{mol}^{-1}$, while the $\mathrm{H}_{3} \mathrm{Si}-\mathrm{BHSiH}_{3}, \mathrm{H}_{2} \mathrm{Si}-\mathrm{BHSiH}_{3}$, and $\mathrm{HSi}-\mathrm{BHSiH}_{3}$ have very similar BDEs of $84.9,77.8$, and $82.0 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, respectively.

Cl substitution for H had little effect on $\mathrm{Si}-\mathrm{B}$ BDEs in saturated compounds. The $\mathrm{H}_{3} \mathrm{Si}-\mathrm{BH}_{2}, \mathrm{H}_{3} \mathrm{Si}-\mathrm{BHCl}$, and $\mathrm{H}_{2} \mathrm{ClSi}-\mathrm{BH}_{2}$ BDEs are $87.4,86.2$, and $88.4 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. In contrast, Cl substitution in unsaturated species can weaken the $\mathrm{Si}-\mathrm{B}$ bond noticeably. The BDEs for $\mathrm{HSi}-$ $\mathrm{BH}, \mathrm{HSi}-\mathrm{BCl}, \mathrm{ClSi}-\mathrm{BH}$, and $\mathrm{ClSi}-\mathrm{BCl}$ are $77.8,64.5,60.3$, and $46.3 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively.

In other silicon compounds, the successive dissociation of $\mathrm{Si}-\mathrm{X}$ bonds shows a pattern in which the second BDE is substantially lower than the first, and the third BDE is higher than the second. ${ }^{14}$ This "high-low-high" pattern results from the change in electronic configuration at SiX_{2} from sp^{3} to $\mathrm{s}^{2} \mathrm{p}^{2}$ and is illustrated by the successive $\mathrm{Si}-\mathrm{H}$ BDEs given at the top of Table 6. Similar behavior has also been observed in the $\mathrm{SiCl}_{n}, \mathrm{SiF}_{n}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{n}, \mathrm{Si}\left(\mathrm{NH}_{2}\right) \mathrm{H}_{n}$, and $\mathrm{Si}\left(\mathrm{NH}_{2}\right) \mathrm{F}_{n}$ species. ${ }^{14-18}$ Successive $\mathrm{Si}-\mathrm{H}$ BDEs in $\mathrm{H}_{3} \mathrm{SiBH}_{2}$ do not exhibit this variation, but rather decrease monotonically from 78.7 to $71.1 \mathrm{kcal} \mathrm{mol}^{-1}$. However, this series does not include the most stable isomer of HSiBH_{2}, which is the dibridged structure. Including this species would introduce $\sim 15 \mathrm{kcal} \mathrm{mol}^{-1}$ more variation in $\mathrm{Si}-\mathrm{H}$ BDEs, but the concept of successive $\mathrm{Si}-\mathrm{H}$ bonds becomes poorly defined when the bridged structures are included. The trend of alternating high and low BDEs does appear in the less saturated species and when the number of H atoms bonded to the B is varied.
D. Reactions. Table 7 lists $\Delta H^{\circ}{ }_{\mathrm{rxn}}(298)$ for various decomposition reactions of the most stable isomers of the completely saturated $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ species. Several trends in
the reaction enthalpies can be observed. (1) Simple fissions of $\mathrm{B}-\mathrm{Cl}, \mathrm{Si}-\mathrm{Cl}$, and $\mathrm{B}-\mathrm{H}$ bonds tend to be the most endothermic decomposition reactions, with $\Delta H^{\circ} \mathrm{rxn}(298) \geq 100 \mathrm{kcal} \mathrm{mol}^{-1}$. $\mathrm{Si}-\mathrm{H}$ bond fissions tend to be lower, in the range of $70-85$ $\mathrm{kcal} \mathrm{mol}^{-1}$. For these bond fissions, reactions with bridgebonded products are more endothermic than reactions with "normal" products. (2) Straight $\mathrm{Si}-\mathrm{B}$ bond fission reactions have endothermicities in the $75-90 \mathrm{kcal} \mathrm{mol}^{-1}$ range. Breaking the $\mathrm{Si}-\mathrm{B}$ bond by shifting a H and eliminating a silylene is considerably easier, with endothermicities in the $40-55 \mathrm{kcal}$ mol^{-1} range. (3) H_{2} and HCl elimination reactions have endothermicities comparable to silylene elimination reactions and thus are also favored decomposition pathways. HCl elimination reactions are generally more endothermic than H_{2} elimination reactions. The 1,1 eliminations from the B tend to be less favored than 1,2 eliminations from the Si and B , which in turn tend to be less favored than 1,1 elimination reactions from the Si. In all of these cases, reactions with bridged or cyclic products tend to be less endothermic than those with "normal" products. (4) Isomerizations have low endothermicities and may thus occur with relative ease. We did find a substantial kinetic barrier for the concerted isomerization $\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$. This suggests that such isomerizations are likely to occur in a stepwise fashion via singly bridged geometries, which were found to be unstable at our levels of theory.

We examine silylborane decomposition reactions in more detail as a model for reactions of $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ compounds. The most likely decomposition reactions are the silylene and H_{2} eliminations with $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ of 51.6 and $49.0 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, respectively. There are reactions with lower endothermicities, but they involve formation of bridged and dibridged species. The extent of molecular rearrangement involved in these reactions makes it highly unlikely that they occur in a single step without an activation barrier in addition to the endothermicity.

TABLE 6: Calculated Bond Dissociation Enthalpies (BDEs) at $298 \mathrm{~K}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)^{a}$

${ }^{a} * \mathrm{H}_{\mathrm{br}}$ indicates a H atom bridge bonded between the Si and the B . Thus, $\mathrm{H}_{\mathrm{br}}-\mathrm{SiH}(\mathrm{H}) \mathrm{BH}_{2}$ indicates the $\mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2} \rightarrow \mathrm{HSi}(\mathrm{H}) \mathrm{BH}_{2}+\mathrm{H}$ reaction.

Several transition states relevant to silylborane decomposition are included in Table 4. For both the $\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{3}$ and the $\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{H}_{2}$ reactions, we found that the
transition states have lower enthalpies than the products; i.e., there are no barriers to these reactions other than the endothermicities. Attempts to find a transition state for the $\mathrm{H}_{3} \mathrm{SiBH}_{2}$

TABLE 7: Calculated Reaction Enthalpies ($\mathrm{kcal} \mathrm{mol}^{-1}$)

reaction	$\Delta H^{\circ}{ }_{\text {rxn }}(298)$	reaction	$\Delta H^{\circ}{ }_{\text {rxn }}(298)$
$\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{H}_{3} \mathrm{SiBH}+\mathrm{H}$	101.4	$\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{BH}_{2} \rightarrow \mathrm{H}_{3} \mathrm{SiSiHBH}+\mathrm{H}_{2}$	52.5
$\rightarrow \mathrm{HSi}(\mathrm{H}) \mathrm{BH}_{2}+\mathrm{H}$	90.7	$\rightarrow \mathrm{H}_{3} \mathrm{SiSiBH}_{2}+\mathrm{H}_{2}$	45.2
$\rightarrow \mathrm{SiH}_{3}+\mathrm{BH}_{2}$	87.4	$\rightarrow-\mathrm{H}_{2} \mathrm{SiBHSiH}_{2}-(\mathrm{cyc})+\mathrm{H}_{2}$	34.6
$\rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}+\mathrm{H}$	86.7	$\mathrm{H}_{3} \mathrm{SiBHCl} \rightarrow \mathrm{H}_{3} \mathrm{SiBH}+\mathrm{Cl}$	120.5
$\rightarrow \mathrm{H}_{3} \mathrm{SiB}+\mathrm{H}_{2}$	83.9	$\rightarrow \mathrm{H}_{3} \mathrm{SiB}+\mathrm{HCl}$	104.1
$\rightarrow \mathrm{H}_{2} \mathrm{SiBH}_{2}+\mathrm{H}$	78.7	$\rightarrow \mathrm{HSi}(\mathrm{H}) \mathrm{BHCl}+\mathrm{H}$	100.6
$\rightarrow \mathrm{H}_{2} \mathrm{SiBH}+\mathrm{H}_{2}$	57.8	$\rightarrow \mathrm{H}_{3} \mathrm{SiBCl}+\mathrm{H}$	100.1
$\rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{3}$	51.6	$\rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}+\mathrm{H}$	96.4
$\rightarrow \mathrm{HSiBH}_{2}+\mathrm{H}_{2}$	49.0	$\rightarrow \mathrm{SiH}_{3}+\mathrm{BHCl}$	87.2
$\rightarrow \mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}+\mathrm{H}_{2}$	43.1	$\rightarrow \mathrm{H}_{2} \mathrm{SiBHCl}+\mathrm{H}$	83.5
$\rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}+\mathrm{H}_{2}$	33.6	$\rightarrow \mathrm{H}_{2} \mathrm{SiBH}+\mathrm{HCl}$	78.0
$\rightarrow \mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	12.0	$\rightarrow \mathrm{HSiBHCl}+\mathrm{H}_{2}$	51.8
$\mathrm{H}_{2} \mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2} \rightarrow \mathrm{HBSiH}_{2} \mathrm{BH}_{2}+\mathrm{H}$	101.6	$\rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$	51.1
$\rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}+\mathrm{BH}_{2}$	84.2	$\rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BCl}+\mathrm{H}_{2}$	43.8
$\rightarrow \mathrm{H}_{2} \mathrm{SiBH}_{2}+\mathrm{BH}_{2}$	76.2	$\rightarrow \mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2}$	23.0
$\rightarrow \mathrm{HSi}\left(\mathrm{BH}_{2}\right)_{2}+\mathrm{H}$	73.1	$\rightarrow \mathrm{HSi}\left(\mathrm{H}_{2}\right) \mathrm{BHCl}$	21.1
$\rightarrow \mathrm{HSiBH}_{2}+\mathrm{BH}_{3}$	45.4	$\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{HSi}(\mathrm{H}) \mathrm{BH}_{2}+\mathrm{Cl}$	108.1
$\rightarrow \mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}+\mathrm{BH}_{3}$	39.5	$\rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}+\mathrm{Cl}$	104.1
$\rightarrow \mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2}+\mathrm{H}_{2}$	35.2	$\rightarrow \mathrm{H}_{2} \mathrm{ClSiBH}+\mathrm{H}$	100.8
$\rightarrow-\mathrm{H}_{2} \mathrm{SiBHBH}-$ (cyc) $+\mathrm{H}_{2}$	24.9	$\rightarrow \mathrm{H}_{2} \mathrm{SiBH}_{2}+\mathrm{Cl}$	96.1
$\mathrm{HB}\left(\mathrm{SiH}_{3}\right)_{2} \rightarrow \mathrm{H}_{3} \mathrm{SiBSiH}_{3}+\mathrm{H}$	97.4	$\rightarrow \mathrm{SiH}_{2} \mathrm{Cl}+\mathrm{BH}_{2}$	88.4
$\rightarrow \mathrm{SiH}_{3}+\mathrm{H}_{3} \mathrm{SiBH}$	84.9	$\rightarrow \mathrm{ClSi}(\mathrm{H}) \mathrm{BH}_{2}+\mathrm{H}$	86.3
$\rightarrow \mathrm{H}_{2} \mathrm{SiBHSiH}_{3}+\mathrm{H}$	76.6	$\rightarrow \mathrm{ClSi}(\mathrm{H}) \mathrm{BH}_{2}+\mathrm{H}$	86.3
$\rightarrow \mathrm{H}_{3} \mathrm{SiBH}_{2}+\mathrm{SiH}_{2}$	53.0	$\rightarrow \mathrm{HClSiBH}_{2}+\mathrm{H}$	81.6
$\rightarrow \mathrm{H}_{2} \mathrm{SiBSiH}_{3}+\mathrm{H}_{2}$	51.8	$\rightarrow \mathrm{H}_{2} \mathrm{SiBH}+\mathrm{HCl}$	76.3
$\rightarrow \mathrm{HSiBHSiH}_{3}+\mathrm{H}_{2}$	46.5	$\rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$	67.5
$\rightarrow \mathrm{Si}(\mathrm{H}) \mathrm{BHSiH}_{3}+\mathrm{H}_{2}$	35.7	$\rightarrow \mathrm{Si}\left(\mathrm{H}_{\text {) }} \mathrm{BH}_{2}+\mathrm{HCl}\right.$	61.6
$\rightarrow-\mathrm{H}_{2} \mathrm{SiBHSiH}_{2}-$ (cyc) $+\mathrm{H}_{2}$	32.0	$\rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}+\mathrm{HCl}$	52.1
$\rightarrow \mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BSiH}_{3}+\mathrm{H}_{2}$	28.5	$\rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{2} \mathrm{Cl}$	49.4
$\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{BH}_{2} \rightarrow \mathrm{H}_{3} \mathrm{SiSiH}_{2}+\mathrm{BH}_{2}$	86.2	$\rightarrow \mathrm{ClSiBH}_{2}+\mathrm{H}_{2}$	45.5
$\rightarrow \mathrm{SiH}_{3}+\mathrm{H}_{2} \mathrm{SiBH}_{2}$	64.8	$\rightarrow \mathrm{SiHCl}+\mathrm{BH}_{3}$	43.1
$\rightarrow \mathrm{SiH}_{2}+\mathrm{H}_{3} \mathrm{SiBH}_{2}$	55.6	$\rightarrow \mathrm{HSi}(\mathrm{HCl}) \mathrm{BH}_{2}$	21.3
$\rightarrow \mathrm{HSiSiH}_{3}+\mathrm{BH}_{3}$	52.5	$\rightarrow \mathrm{ClSi}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{2}$	7.1

$\rightarrow \mathrm{H}_{2} \mathrm{SiBH}+\mathrm{H}_{2}$ reaction were not successful, but the calculations suggested that there should be a high barrier. Attempts to find a transition state for the $\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{H}_{3} \mathrm{SiB}+$ H_{2} reaction were also unsuccessful, but the calculations suggested that the reaction proceeds directly. We did determine transition states for the isomerization of HSiBH_{2} to the bridged species and found no activation barriers. Thus, a picture emerges in which $\mathrm{H}_{3} \mathrm{SiBH}_{2}$ decomposes via both silylene elimination and $1,1 \mathrm{H}_{2}$ elimination from the Si to form HSiBH_{2}, with the activation energies determined by the endothermicities. HSiBH_{2} then isomerizes to $\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$, and then to $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$ in barrierless, exothermic reactions. It is reasonable to expect a similar set of elimination and isomerization reactions to occur with the larger and/or substituted molecules.

The decomposition of silylborane can be compared with the decomposition of disilane. Our calculations for disilane ${ }^{13,14}$ indicated that the silylene elimination and $1,1 \mathrm{H}_{2}$ elimination reactions are endothermic by 53.9 and $55.8 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, with no additional activation barriers. In contrast, the $1,2 \mathrm{H}_{2}$ elimination reaction, $\mathrm{Si}_{2} \mathrm{H}_{6} \rightarrow \mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}+\mathrm{H}_{2}$, is endothermic by $43.8 \mathrm{kcal} \mathrm{mol}^{-1}$ but has an additional activation barrier of $\sim 45 \mathrm{kcal} \mathrm{mol}^{-1}$. Comparing these numbers to the values in Table 7 indicates that having a BH_{2} group instead of the SiH_{3} group reduces the enthalpy required for the SiH_{2} and $1,1 \mathrm{H}_{2}$ elimination reactions by 2.3 and $6.8 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. This leads to the H_{2} elimination reaction being energetically favored rather than the SiH_{2} elimination reaction. The presence of the BH_{2} rather than the SiH_{3} group also increases the endothermicity for the $1,2 \mathrm{H}_{2}$ elimination by 14 kcal mol ${ }^{-1}$.

Other reactions listed in Table 7 show the effects of additional substitutions. For silylene elimination reactions, putting an additional BH_{2} group on the silicon further reduces the energy requirements. The endothermicity for the $\mathrm{H}_{2} \mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2} \rightarrow$ $\mathrm{HSiBH}_{2}+\mathrm{BH}_{3}$ reaction is only $45.4 \mathrm{kcal} \mathrm{mol}^{-1}, \sim 6 \mathrm{kcal} \mathrm{mol}^{-1}$
lower than for $\mathrm{H}_{3} \mathrm{SiBH}_{2}$. However, it appears that putting an additional silyl group on silylborane counteracts the effect of the initial BH_{2} substitution. The endothermicities for the $\mathrm{HB}\left(\mathrm{SiH}_{3}\right)_{2} \rightarrow \mathrm{H}_{3} \mathrm{SiBH}_{2}+\mathrm{SiH}_{2}$ and $\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{BH}_{2} \rightarrow \mathrm{SiH}_{2}+$ $\mathrm{H}_{3} \mathrm{SiBH}_{2}$ reactions of 53.0 and $55.6 \mathrm{kcal} \mathrm{mol}^{-1}$ are more like the $\mathrm{Si}_{2} \mathrm{H}_{6} \rightarrow \mathrm{SiH}_{2}+\mathrm{SiH}_{4}$ value of $53.9 \mathrm{kcal} \mathrm{mol}^{-1}$ than the $\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{3}$ value of $51.6 \mathrm{kcal} \mathrm{mol}^{-1}$. For reactions involving the 1,1 elimination of H_{2} from Si , the presence of an additional BH_{2} group continues to reduce the energy requirements. $\Delta H^{\circ}{ }_{\text {rxn }}$ for the $\mathrm{H}_{2} \mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2} \rightarrow \mathrm{Si}\left(\mathrm{BH}_{2}\right)_{2}$ $+\mathrm{H}_{2}$ reaction is only $35.2 \mathrm{kcal} \mathrm{mol}^{-1}$. In this case, however, the presence of a second silyl group also results in a reduction. The endothermicities for the $\mathrm{HB}\left(\mathrm{SiH}_{3}\right)_{2} \rightarrow \mathrm{HSiBHSiH}_{3}+\mathrm{H}_{2}$ and $\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{BH}_{2} \rightarrow \mathrm{H}_{3} \mathrm{SiSiBH}_{2}+\mathrm{H}_{2}$ reactions are 46.5 and $45.2 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, somewhat less than the 49.0 kcal mol^{-1} for $\mathrm{H}_{3} \mathrm{SiBH}_{2}$.

For $\mathrm{HB}\left(\mathrm{SiH}_{3}\right)_{2}$ and $\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{BH}_{2}$, there are also low endothermicity decomposition reactions that produce $-\mathrm{H}_{2} \mathrm{SiBHSiH}_{2}-$ (cyc) and hydrogen. As in the case of the reactions with bridged products, these reactions probably also occur in two steps, with the 1,1 elimination of H_{2} followed by insertion of the silylene produced into a $\mathrm{Si}-\mathrm{H}$ or $\mathrm{B}-\mathrm{H}$ bond on the other end of the molecule. Such silylene insertions are often barrierless processes, so we expect the rate limitation to be provided by the endothermicity of the initial H_{2} elimination of $45-47 \mathrm{kcal}$ mol^{-1}. We note that in silylborane the energy required for silylene elimination was only slightly higher than that for H_{2} elimination but that increasing the overall size of the molecule preferentially reduces the energy required for the H_{2} elimination reactions.

Decomposition reactions of the chlorinated silylborane involve the same basic chemistry, although the presence of the chlorine increases the number of possible decomposition reactions and alters the energetics somewhat. For $\mathrm{H}_{2} \mathrm{ClSiBH}_{2}$ and $\mathrm{H}_{3} \mathrm{SiBHCl}$, as for $\mathrm{H}_{3} \mathrm{SiBH}_{2}$, the least endothermic reactions
(other than isomerizations) are silylene elimination $\left(\mathrm{SiH}_{2}\right.$ or $\mathrm{HSiCl})$ and the 1,1 elimination of H_{2} from the silicon. Chlorine substitution on the B has little effect on the energetics of these reactions. $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ is $51.1 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{H}_{3} \mathrm{SiBHCl} \rightarrow \mathrm{SiH}_{2}+$ $\mathrm{BH}_{2} \mathrm{Cl}$, which is basically the same as the $51.6 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{H}_{3} \mathrm{SiBH}_{2} \rightarrow \mathrm{SiH}_{2}+\mathrm{BH}_{3}$. For the H_{2} elimination reaction, Cl substitution on the B raises the endothermicity slightly from 49.0 to $51.1 \mathrm{kcal} \mathrm{mol}^{-1}$. In contrast, Cl substitution on Si reduces the endothermicity of the silylene elimination reaction significantly from 51.6 to $43.1 \mathrm{kcal} \mathrm{mol}^{-1}$, while lowering the endothermicity of the H_{2} elimination reaction from 49.0 to 45.5 kcal mol^{-1}. The transition states included in Table 4 for chlorinated species indicate that the SiH_{2} and HSiCl elimination reactions have no barriers to reaction other than the endothermicity. This should also be true for the H_{2} elimination reaction, based on our results for $\mathrm{H}_{3} \mathrm{SiBH}_{2}$.

For $\mathrm{H}_{2} \mathrm{ClSiBH}_{2}$, reactions involving HCl elimination from the Si come next in order of increasing endothermicity. In analogy with the 1,1 elimination of H_{2} from $\mathrm{H}_{3} \mathrm{SiBH}_{2}$, we expect the 1,1 elimination of HCl also to occur sequentially with the initial elimination step producing HSiBH_{2}, followed by isomerization to the bridged species. Unlike $\mathrm{H}_{3} \mathrm{SiBH}_{2}$, however, the $\mathrm{H}_{2} \mathrm{ClSiBH}_{2} \rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$ reaction appears to have a small activation barrier in addition to the endothermicity. The transition state is $70.6 \mathrm{kcal} \mathrm{mol}^{-1}$ above the reactant or 3.1 kcal mol^{-1} greater than $\Delta H_{\mathrm{rxn}}^{\circ}$. We also found a different transition state for $1,1 \mathrm{HCl}$ elimination that is another $3.1 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy. This has a significantly different geometry in which the departing H atom interacts with the Cl, Si, and B , so we write it as $\left[\mathrm{HClSi}(\mathrm{H}) \mathrm{BH}_{2}\right] \rightarrow \mathrm{HSiBH}_{2}+\mathrm{HCl}$, where the square brackets indicate that the singly bridged species is not stable.

The HCl elimination from $\mathrm{H}_{2} \mathrm{ClSiBH}_{2}$ can be compared with the analogous reaction in a chlorinated disilane. Applying our calculational methods to the 1,1 elimination of HCl from $\mathrm{H}_{3} \mathrm{SiSiH}_{2} \mathrm{Cl}^{47}$ results in an activation energy that is virtually the same as the endothermicity of $73.6 \mathrm{kcal} \mathrm{mol}^{-1}$. Thus, it appears that the presence of a BH_{2} group instead of the SiH_{3} group reduces the endothermicity of the reaction by 6.1 kcal mol^{-1} but reduces the activation energy by only half this amount. Our error estimates for the transition-state enthalpies, however, are comparable to these differences, so such comparisons should be viewed with caution.

Chlorination allowed the adducts $\mathrm{H}_{2} \mathrm{Si}: \mathrm{BH}_{2} \mathrm{Cl}$ and $\mathrm{HClSi}: \mathrm{BH}_{3}$ to be stable at our level of theory although the fully hydrogenated analogue was not. In $\mathrm{H}_{2} \mathrm{Si}: \mathrm{BH}_{2} \mathrm{Cl}$, the $\mathrm{Si}-\mathrm{B}$ distance is $4.067 \AA$ while the $\mathrm{Si}-\mathrm{Cl}$ distance is $3.108 \AA$. Thus, the attractive interaction lies between the empty p orbitals on the Si and the electron density on the Cl , rather than the between the Si and the B . Likewise, in $\mathrm{HClSi}: \mathrm{BH}_{3}$, the interaction appears to be between the empty orbitals on the B and the electron density on the Cl . These adducts are weakly bound ($\leq 1 \mathrm{kcal} \mathrm{mol}^{-1}$) and are unlikely to affect the kinetics significantly.

Earlier, we observed that SiH_{3}-for-H substitutions had only minor effects on BDEs for bonds that were somewhat distant from the center of the substitution. This suggests that increasing the size of the molecule to a cluster or surface may not make major alterations to bond dissociation and/or reaction enthalpies for normal, unstrained configurations. It is thus reasonable to suggest that the following could apply to the surface reactions that occur during the deposition of in situ doped silicon, based on the reaction enthalpy results for gas-phase $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ molecules. (1) Simple bond scissions of surface $\mathrm{Si}-\mathrm{H}, \mathrm{Si}-$ $\mathrm{Cl}, \mathrm{B}-\mathrm{H}$, and $\mathrm{B}-\mathrm{Cl}$ bonds are too endothermic to be important,
given the $500-700{ }^{\circ} \mathrm{C}$ temperatures used in CVD processes. (2) For hydrides, the presence of boron makes it significantly easier to eliminate H_{2} from an adjacent Si atom. In the silicon hydrides, the energy required for silylene elimination is comparable to or slightly lower than that required for H_{2} elimination. The presence of the B lowers the energy requirement in both cases, but favors the latter. For conditions under which the elimination of hydrogen from the surface is rate limiting, this would explain an increased deposition rate. (3) For chlorides, information on bond enthalpies as well as temperature-programmed desorption experiments ${ }^{48}$ indicates that removing Cl from the surface is much harder than removing H and is believed to be rate limiting in chlorosilane CVD. The presence of B only slightly reduces the energy required for HCl elimination from an adjacent Si . However, having a B and a Cl bonded to Si reduces the energy required for either H_{2} elimination or silylene formation. Silylene formation involving the production of gas-phase $\mathrm{BH}_{2} \mathrm{Cl}$ provides an additional path for removing chlorine from the surface. This would be consistent with the reduced B dopant incorporation that has been reported for chlorosilane CVD. ${ }^{8}$

The chemical bonding in some of these gas-phase $\mathrm{Si}-\mathrm{B}-$ $\mathrm{H}-\mathrm{Cl}$ molecules may also provide some insights into surface chemistry. The presence of stable geometries with bridgebonded H atoms in gas-phase molecules suggests that similar bridge bonds could occur between surface atoms, either as stable geometries or as transients (transition states). A bridge-bonded H atom could provide a pathway for H migration either between surface Si atoms or between surface Si and B atoms. The pseudocyclic species $-\mathrm{H}_{2} \mathrm{SiBHSiH}_{2}-$ has a $\mathrm{Si}-\mathrm{Si}$ bond length of $2.64 \AA$, which is longer than either a bulk $\mathrm{Si}-\mathrm{Si}$ bond (2.352 $\AA)^{49}$ or the $\mathrm{Si}-\mathrm{Si}$ dimer bond distance for the clean (100) surface ($\sim 2.3 \AA$)..9,10 The stability of this gas-phase species suggests that a BH group on a $\mathrm{Si}-\mathrm{Si}$ dimer on a (100) surface is likely to prefer a bridged position rather than being bonded to only one of the Si atoms, as this would allow the boron to be trivalent, while allowing the $\mathrm{Si}-\mathrm{Si}$ bond to stretch and relax somewhat.

IV. Summary

We have obtained a self-consistent set of thermochemical parameters for about 100 molecules in the $\mathrm{Si}-\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ system from a combination of ab initio electronic structure calculations and empirically based corrections. The species are silylboranes and chlorosilylboranes, their decomposition fragments, plus a few transition states. In addition to thermochemical properties, we obtained molecular geometries, frequencies, moments of inertia, and electronic energies from the electronic structure calculations. Some of these molecules, particularly the less saturated species, have unusual chemical bonding. The most notable features are the presence of H atoms bridge-bonded between the Si and B atoms and the prevalence of cyclic isomers among the larger unsaturated species.

Our calculations indicate that silylborane is likely to decompose via the elimination of H_{2} as well as silylene formation. The former probably involves the 1,1 elimination of the H_{2} from the Si , followed by isomerization of the HSiBH_{2} to the bridged $\mathrm{Si}(\mathrm{H}) \mathrm{BH}_{2}$ species and then to the dibridged $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{BH}$ species. In comparison with the analogous reaction in disilane, the presence of the B significantly reduces the energy required to remove H_{2} from the adjacent Si . Further BH_{2}-for-H substitution on the Si results in a decrease in the endothermicity of both the silylene formation and H_{2} elimination reactions. In contrast, SiH_{3}-for- H substitution (on either the Si or the B) counteracts the effect of the BH_{2} group on the endothermicity of the silylene formation reaction, while resulting in an additional decrease in
the endothermicity of the H_{2} elimination reaction. Chlorine substitution on the B has little effect on the endothermicity for silylene formation but increases the endothermicity for H_{2} elimination slightly. Chlorine substitution on the Si , however, significantly reduces the energy required for both reactions. For the elimination of HCl from $\mathrm{H}_{2} \mathrm{ClSiBH}_{2}$, the presence of B only slightly reduces the energy required, compared to the analogous reaction in $\mathrm{H}_{2} \mathrm{ClSiSiH}_{3}$. These reductions in reaction energies may help explain how the addition of small amounts of $\mathrm{B}_{2} \mathrm{H}_{6}$ can alter deposition rates in silicon CVD so greatly.

Acknowledgment. We thank Dr. Istvan Lengyel and Prof. K. F. Jensen for collaborations on the chemistry of B-doped silicon deposition. We acknowledge the contributions of Dr. Mark D. Allendorf to the work on thermochemistry of B compounds and Dr. J. S. Binkley to the development of the theoretical methods. This work was performed at Sandia National Laboratories, partially for the Office of Basic Energy Sciences, and partially for the Office of Defense Programs under a Technology Transfer Initiative CRADA (\#1362) between Sandia, Los Alamos, and Lawrence Livermore National Laboratories and the Semiconductor Research Corporation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Appendix

The Supporting Information data are as follows: Table 1S presents atomic coordinates (in angstroms) obtained from the HF/6-31G* geometry optimization calculations for each of the molecular species. Table 2 S gives moments of inertia in atomic units (amu bohr ${ }^{2}$), while Table 3S lists scaled vibrational frequencies obtained at the same level of theory. Table 4 S presents electronic energies resulting from various perturbation theory calculations using the $6-31 \mathrm{G}^{* *}$ basis set. The projected UHF (PUHF) and projected UMP2 (PUMP2) energies ${ }^{41}$ are given for reference, although they are not used in the derivation of the BACs. Table 5 S gives results from the G 2 calculations for $\mathrm{H}_{3} \mathrm{SiBH}_{2}, \mathrm{H}_{2} \mathrm{Si}=\mathrm{BH}$, and $\mathrm{B}_{2} \mathrm{H}_{4}$ that were used to determine the $\mathrm{Si}-\mathrm{B}$ and $\mathrm{B}-\mathrm{B}$ BACs.

Table 6S gives polynomial coefficients for C_{p}, H, and S as a function of temperature in the format of an input file as used by the CHEMKIN package of software. ${ }^{50,51}$ Fits are provided for many of the species covered in this paper and are defined by

$$
\begin{gathered}
\frac{C_{p}}{R}=a_{1}+a_{2} T+a_{3} T^{2}+a_{4} T^{3}+a_{5} T^{4} \\
\frac{H}{R T}=a_{1}+\frac{a_{2}}{2} T+\frac{a_{3}}{3} T^{2}+\frac{a_{4}}{4} T^{3}+\frac{a_{5}}{5} T^{4}+\frac{a_{6}}{T} \\
\frac{S}{R}=a_{1} \ln (T)+a_{2} T+\frac{a_{3}}{2} T^{2}+\frac{a_{4}}{3} T^{3}+\frac{a_{5}}{4} T^{4}+a_{7}
\end{gathered}
$$

This information is also available on request from the authors (e-mail pho@sandia.gov or melius@ca.sandia.gov).

Supporting Information Available: Tables as described in the Appendix (52 pages). Ordering information is given on any current masthead page.

References and Notes

(1) See, for example: Hitchman, M. L.; Jensen, K. F., Eds. Chemical Vapor Deposition: Principles and Applications; Academic Press: London, 1993.
(2) See, for example: Mayyappan, M., Ed. Computational Modeling in Semiconductor Processing; Artech House: Boston, 1995.
(3) See, for example: Coltrin, M. E.; Kee, R. J.; Evans, G. H. J. Electrochem. Soc. 1989, 136, 819. Kushner, M. J. J. Appl. Phys. 1988, 63, 2532 and references therein.
(4) Eversteyn, F. C.; Put, B. H. J. Electrochem. Soc. 1973, 120, 106.
(5) Nakayama, S.; Kawashima, I.; Murota, J. J. Electrochem. Soc. 1986, 133, 1721.
(6) Shiozawa, J.; Kasai, Y.; Mikata, Y.; Yamabe, K. J. Electrochem. Soc. 1994, 141, 1334.
(7) Sanganeria, J. K.; Violette, K. E.; Öztürk, M. C.; Harris, G.; Maher, D. M. J. Electrochem. Soc. 1995, 142, 285.
(8) Agnello, P. D.; Sedgwick. T. O.; Cotte, J. J. Electrochem. Soc. 1993, 140, 2703.
(9) Doren, D. J. In Advances in Chemical Physics, Vol XCV, Prigogine, I., Rice, S. A. Eds.; Wiley: New York, 1996; Vol. XCV, pg 1.
(10) Waltenburg, H. N.; Yates, Jr., J. T. Chem. Rev. 1995, 95, 1589.
(11) Melius, C. F. In Chemistry and Physics of Energetic Materials; Bulusu, S. N., Ed.; Kluwer Academic Publishers: Dordrecht, 1990; p 21.
(12) Ho, P.; Coltrin, M. E.; Binkley, J. S.; Melius, C. F. J. Phys. Chem. 1985, 89, 4647. Revised values for heats of formation are given in ref 14.
(13) Ho, P.; Coltrin, M. E.; Binkley, J. S.; Melius, C. F. J. Phys. Chem.

1986, 90, 3399. Revised values for heats of formation are given in ref 14.
(14) Ho, P.; Melius, C. F. J. Phys. Chem. 1990, 94, 5120.
(15) Melius, C. F.; Ho, P. J. Phys. Chem. 1991, 95, 1410.
(16) Allendorf, M. D.; Melius, C. F. J. Phys. Chem. 1992, 96, 428.
(17) Allendorf, M. D.; Melius, C. F. J. Phys. Chem. 1993, 97, 720.
(18) Ho, P.; Melius, C. F. J. Phys. Chem. 1995, 99, 2166.
(19) Allendorf, M. D.; Melius, C. F.; Ho, P.; Zachariah, M. R. J. Phys. Chem. 1995, 99, 15285.
(20) Allendorf, M. D.; Melius, C. F. J. Phys. Chem. A 1997, 101, 2670.
(21) Bock, C. W.; Trachtman, M.; Mains, G. J. J. Phys. Chem. 1985, 89, 2283.
(22) Bock, C. W.; Trachtman, M.; Maker, P. D.; Niki, H.; Mains, G. J. J. Phys. Chem. 1986, 90, 5669.
(23) Bock, C. W.; Trachtman, M.; Mains, G. J. J. Phys. Chem. 1986, 90, 51.
(24) Bock, C. W.; Trachtman, M.; Mains, G. J. J. Phys. Chem. 1988, 92, 294.
(25) Mains, G. J.; Bock, C. W.; Trachtman, M. J. Phys. Chem. 1990, 94, 5449.
(26) Mains, G. J.; Bock, C. W.; Trachtman, M. J. Phys. Chem. 1989, 93, 1745.
(27) Mains, G. J.; Trachtman, M.; Bock, C. W. J. Mol. Struct. (THEOCHEM) 1991, 231, 125.
(28) Luke, B. T.; Pople, J. A.; Krogh-Jespersen, M.-B.; Apeloig, Y.; Chandrasekhar, J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 260.
(29) Luke, B. T.; Pople, J. A.; Krogh-Jespersen, M.-B.; Apeloig, Y.; Karni, M.; Chandrasekhar, J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 270.
(30) Schleyer, P. v. R.; Kost, D. J. Am. Chem. Soc. 1988, 110, 2105.
(31) Coolidge, M. B.; Borden, W. T. J. Am. Chem. Soc. 1988, 110, 2298.
(32) Subramanian, G.; Jemmis, E. D. Chem. Phys. Lett. 1992, 200, 567.
(33) Subramanian, G.; Jemmis, E. D.; Prasad, B. V. Chem. Phys. Lett. 1994, 217, 296.
(34) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J., Binkley, J. S.; Defrees. D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision B.1; Gaussian, Inc.: Pittsburgh, PA, 1995.
(35) Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.
(36) Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1954, 22, 571.
(37) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, $28,213$.
(38) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
(39) Pople, J. A.; Schlegel, H. B.; Krishnan, R.; DeFrees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A. Int. J. Quantum Chem. 1981, S15, 269.
(40) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.
(41) Schlegel, H. B. J. Chem. Phys. 1986, 84, 4530.
(42) Chase, Jr., M. W.; Davies, C. A.; Downey, Jr., J. R.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. JANAF Thermochemical Tables, 3rd ed.; J. Phys. Chem. Ref. Data, 1985, 14 (Supp. 1).
(43) Lischka, H.; Köhler, H.-J. J. Am. Chem. Soc. 1983, 105, 6646. Binkley, J. S. J. Am. Chem. Soc. 1984, 106, 603. Colegrove, B. T.; Schaefer, III, H. F. J. Phys. Chem. 1990, 94, 5593. Koseki, S.; Gordon, M. S.; Schmidt, M. W. Chem. Phys. Lett. 1992, 200, 303.
(44) Bogey, M.; Bolvin, H.; Demuynck, C.; Destombes, J. L. Phys. Rev. Lett. 1991, 66, 413.
(45) See, for example: Curtiss, L. A.; Raghavachari, K.; Deutsch, P. W.; Pople, J. A. J. Chem. Phys. 1991, 95, 2433.
(46) See, for example: Su, M.-D.; Schlegel, H. B. J. Phys. Chem. 1993, 97, 8732. Boatz, J. A.; Gordon, M. S. J. Chem. Phys. 1991, 95, 7244 and references therein.
(47) Ho, P.; Melius, C. F. Unpublished results.
(48) Koleske, D. D.; Gates, S. M.; Beach, D. B. J. Appl. Phys. 1992, 72, 4073.
(49) Weast, R. C., Ed. CRC Handbook of Chemistry and Physics, 52nd ed.; The Chemical Rubber Co., Cleveland, 1971; p F174.
(50) Kee, R. J.; Rupley, F. M.; Miller, J. A. CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics; Sandia National Laboratories Report SAND89-8009, 1989. Kee, R. J.; Rupley, F. M.; Meeks, E. M.; Miller, J. A. CHEMKIN-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics; Sandia National Laboratories Report SAND96-8216, 1996.
(51) Kee, R. J.; Rupley, F. M.; Miller, J. A. The CHEMKIN Thermochemical Data Base; Sandia National Laboratories Report SAND87-8215, 1987.

[^0]: ${ }^{\dagger}$ Current address: Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Mailstop L-452, Livermore, CA 94550.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, November 15, 1997.

[^1]: ${ }^{a}$ A number in parentheses after a bond length indicates the number of bonds of that type and length in the molecule. ${ }^{b}$ "UHF" indicates a

